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Problem

Optimized resource allocation requires careful traffic
identification.
Existing literature study classifying 5G traffic as 3 classes of:
e Enhanced Mobile Broadband (eMBB)
Massive Machine Type Communications (mMTC)
Ultra-Reliable Low Latency Communication (URLLC)

Challenges

ML methods should not access user data.

The solution must be O-RAN compliant, with standardized
Interfaces.

ML methods should be able to identify new traffic types (out
of distribution i.e., OOD) that are not previously trained on.
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e Classification and OOD Detection for O-RAN
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Training and Test Pipelines
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e Post-training - Characterizing
ID clusters:
o Center
o Radius

e During Deployment:
o Return K-nearest Neighbors
o Detect OOD samples.
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e T[rue positive as high as 88%.
e False positive as low as 8%.




