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RF Fingerprinting Unmanned Aerial Vehicles With
Non-Standard Transmitter Waveforms
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Abstract—The universal availability of unmanned aerial vehi-
cles (UAVs) has resulted in many applications where the same
make/model can be deployed by multiple parties. Thus, identifying
a specific UAV in a given swarm, in a manner that cannot be spoofed
by software methods, becomes important. We propose RF finger-
printing for this purpose, where a neural network learns subtle
imperfections present in the transmitted waveform. For UAVs, the
constant hovering motion raises a key challenge, which remains
a fundamental problem in previous works on RF fingerprinting:
Since the wireless channel changes constantly, the network trained
with a previously collected dataset performs poorly on the test data.
The main contribution of this paper is to address this problem by:
(i) proposing a multi-classifier scheme with a two-step score-based
aggregation method, (ii) using RF data augmentation to increase
neural network robustness to hovering-induced variations, and (iii)
extending the multi-classifier scheme for detecting a new UAV, not
seen earlier during training. Importantly, our approach permits
RF fingerprinting on manufacturer-proprietary waveforms that
cannot be decoded or altered by the end-user. Results reveal a
near two-fold accuracy in UAV classification through our multi-
classifier method over the single-classifier case, with an overall
accuracy of 95% when tested with data under unseen channel. Our
multi-classifier scheme also improves new UAV detection accuracy
to a near perfect 99%, up from 68% for a single neural network
approach.

Index Terms—UAV RF fingerprinting, multi-classifier, deep
neural networks.

I. INTRODUCTION

AGRICULTURE, construction, insurance, and telecommu-
nications are being transformed by the explosive growth

of small unmanned aerial vehicles (UAVs). Several industry
estimations predict that this segment will grow to $17 Billion
by 2024 [1]. Companies servicing these market segments, casual
users, and hobbyists have benefited from widespread UAV avail-
ability at affordable price points. However, this has also raised
the possibility of new attack vectors. For example, when UAVs
serve as mobile wireless access points (APs) for ground nodes,
malicious users may masquerade legitimate APs by falsely ad-
vertising recorded SSIDs [2]. Classical differentiation methods
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Fig. 1. UAV classification using multi-classifier scheme with two levels of
aggregation.

like angle of arrival and time of flight of the signal may no
longer be possible, as even the legitimate APs move around
the region of interest. To address this important issue of trust,
we propose deep learning based RF fingerprinting for UAVs
that can complement other secure detection methods [3], [4].
Specifically, our approach is composed of increasing robustness
in the training pipeline and combining test outputs of multiple
trained deep neural networks, each being trained on a different
portion of a large training set.

Problem: RF fingerprinting relies on identifying discriminat-
ing transmitter-generated features at the receiver. These features
include artifacts such as nonlinearities in the power amplifier
gain, I/Q phase imbalance, clock and frequency offsets, etc.,
mainly arising from slight variations in the operating points of
the electronic components. While RF fingerprinting using deep
learning has shown to be very successful for static devices [5]–
[10], to the best of our knowledge, there are no works on
applying this technique for classifying identical hovering UAVs.
We note that this is different from the well-investigated problem
of UAV type detection [11], where the objective is to distinguish
between different make/models. Since the wireless transmitters,
typically WiFi interface cards, are from different providers,
fingerprinting these cards (and hence identifying the UAV)
reduces to a simpler problem than classifying UAVs of the same
make/model.

Furthermore, the constant UAV hovering introduces com-
plex channel variations between the transmitter UAV and the
ground-based receiver, which needs to be carefully studied. Our
previous experimental studies show that the standard deviation
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in position around the target location can be as high as 0.85 m
for DJI M100 UAV using on-board GPS modules [12]. While
we focus only on RF fingerprinting in this paper, our technique
can be combined with multimodal sensors detecting acoustic or
infrared patterns for enhanced classification accuracy. A recent
work jointly uses WiFi and Bluetooth emissions [13], although
this increases complexity for both the sensing hardware and the
training/classification process.

Approach: As shown in Fig. 1, we assume a network of a
number of UAVs that may coexist in the same airspace. We
form a dataset by flying 7 identical DJI M100 UAVs inside
an RF anechoic chamber, at different distances from a receiver
that collects I/Q samples from DJI’s non-standard, proprietary
waveform. Thus, the setup captures real-world signal variations,
as would be seen in practical deployments. We address a more
generalized fingerprinting problem than previous works for clas-
sifying UAVs and stationary devices, where the waveform was
known, modifiable and decodable [5], [14], [15]. Moreover, our
prior solutions of introducing an artificial fingerprint by (i) inten-
tionally injecting distortions of type I/Q imbalance in a software-
defined-radio-enabled transmitter [5] or (ii) applying a specially
designed FIR filter to enhance the transmitter fingerprint [15] are
not feasible. We previously used partial equalization for WiFi
signals, which removes the channel-induced distortions before
training, so as to capture the pure fingerprint [14]. Equalization
is proven to be helpful in the case of hovering UAV emitters,
where the dataset is heavily impacted by the channel [16].
However, as we consider a proprietary waveform, equalization
is not applicable, either. In summary, we seek to design a method
that relies only on raw I/Q samples, which further motivates us
to explore approaches such as data augmentation to train more
robust deep learning models.

Finally, in real world scenarios, detecting a new (out-of-
library) device (i.e., the device whose signal does not exist in the
training set) is of paramount importance. Since the output of the
neural network is a probability vector, there is always going to
be a non-zero probability of identifying the new UAV as one of
the previously trained, legitimate UAVs. Thus, the new UAV will
be classified wrongly as one of the known classes. To address
this issue, we design an approach that uses statistics observed
in the known device set to guide a decision process in the new
device test set, assuming that there are inherent similarities in
the information distribution. We start from the approach in [17]
that showed promising outcomes for standard WiFi frames, and
then extend that approach within the multi-classifier approach
in this new domain of UAV identification.

Contributions: Our contributions are as follows:
� We empirically show the effect of aerial hovering on the

accuracy of deep learning-based UAV RF fingerprinting.
We quantify the degradation in the test performance of a
neural network classically trained on past sequences of
data, due to these slight hovering motions (Section III).

� We propose a novel architecture composed of multiple
classifiers, each being trained on different portions of
past sequences and learned a different channel-distorted
fingerprint. In the test phase, the predictions from all the
neural networks are aggregated to make a final decision
for each transmission (Section IV-A).

� To combine the probability vectors at the output of the
neural networks, we propose a two-level score-based
aggregation method. In the first level, output vectors of
each individual neural network are combined to make
predictions per neural network. In the second level,
predictions of all the neural networks are combined to
make a joint prediction by all the neural networks for
each transmission (Section IV-B).

� We propose an algorithm for determining the number of
neural networks that should compose the multi-classifier
scheme (Section IV-C).

� We propose a data augmentation scheme for training
robust individual neural networks in our multi-classifier
scheme, which further improves the accuracy (Sec-
tion IV-D).

� For detecting a new UAV, we propose a new device
detection method with our multi-classifier scheme. The
result is a robust framework for detecting new UAVs that
the neural network is not previously trained to classify
(Section IV-E).

In the rest of the paper, Section II discusses more related
works, Section V presents performance evaluation results, and
Section VI concludes the paper.

II. RELATED WORK

A wide variety of techniques for UAV detection and classifica-
tion, such as passive/active RF, acoustic, or image-based sensing
have been investigated previously [12], [18]–[20]. However,
the primary focus of this work is UAV classification using RF
fingerprinting, and we survey below RF-based approaches that
are directly relevant to the scope of this paper.

UAV manufacturers may use different RF technologies for
signaling, with variations in transmitter parameters such as
frame interval or frequency of operation, which can be ex-
ploited for the comparatively simpler problem of identifying the
make/model [21], [22]. For example, authors in [11] propose a
UAV detection method using K-Nearest Neighbours, which has
less computational overhead compared to neural networks, for
UAVs with different make/models.

There are methods to extract Hash Fingerprinting features
from the preamble with an SVDD-based classifier to identify dif-
ferent UAV vendors [23]. Moreover, authors in [24] use two sep-
arate phases of feature extraction and machine-learning-based
UAV identification. Both these works rely on the assumption
that the UAVs are transmitting a known protocol (WiFi). A
priori knowledge of specific features that must be learnt is not
always possible, and therein lies the benefit of our deep learning
approach that fuses these two phases together and automates
the entire process of classification. Authors in [25] design a
deep-learning-based UAV-fingerprinting scheme by using mod-
ified generative adversarial networks (GANs). However, their
objective is to classify different signal protocols, which is not
the same as our scenario, where the same make/model UAVs
transmit the same protocol.

Multi-classifier approaches have been applied in differ-
ent wireless problems. Authors in [26] propose a multi-
classifier scheme for robust WiFi-based positioning systems.
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Fig. 2. Downlink transmissions of two DJI M100 UAVs.

MFMCF [27] propose a fingerprint-based localization system.
They construct three different fingerprints of signal strength
difference (SSD), hyperbolic location fingerprint (HLF), and re-
ceived signal strength (RSS). MFMCF fuses the fingerprints in a
single vector and trains three classifiers of K-nearest neighbours
(KNN), support vector machine (SVM), and random forest (RF)
for a robust localization system.

To the best of our knowledge, none of the previous works ad-
dress RF fingerprinting in identical, in-flight UAVs transmitting
a proprietary or unknown protocol. We start our investigation
by collecting a dataset from COTS DJI M100 UAVs under
realistic UAV hovering motion that greatly impacts the wireless
channel. Since we cannot equalize the signal, we must rely only
on fingerprinting using raw I/Q samples.

III. DATASET, TRAINING/TESTING PIPELINE

In this section, we provide brief insights on the proprietary
waveform used by the DJI M100 UAVs [28], describe the
experimental setup and dataset, detail the training pipeline, and
analyze different ways to report the test accuracy results for UAV
classification as well as new UAV detection.

A. COTS UAV Signal Analysis

1) Uplink: DJI employs frequency-hopping spread spectrum
(FHSS) for the remote controller (RC) to UAV link. FHSS
switches channels following a pseudo-random sequence known
at both ends of the link. DJI UAVs typically work on the 5 GHz
band (5.725–5.825 GHz) or the ISM band (2.401–2.481 GHz).
The FHSS characteristics vary among different models.

2) Downlink: UAVs communicate periodically with the RC
in order to report telemetry data or battery level. They may relay
video stream data that requires high throughput and low latency
links. Based on application requirements, video transmissions
may vary in bandwidth and transmission periodicity. The M100
UAVs use the Lightbridge protocol, developed by DJI specifi-
cally for long range (up to 5 km), robust aerial communication
in the 2.4 GHz band. Lightbridge has 8 selectable channels in
the ISM band (2.401–2.481 GHz), with a separation of 2 MHz
between carriers. Channel selection can be done manually, or it
can be left to the radio to determine the channel with the least
interference [29].

In Fig. 2, we visualize spectrum usage from two concurrent
DJI M100 transmissions, as captured by a Tektronix RSA507 A
spectrum analyzer. We see that each UAV selects a different
transmission band to avoid interference. Moreover, the UAV
accesses the medium at a fixed rate of ∼50 Hz.

B. UAV Dataset

In an RF anechoic chamber, we collect signals from 7 identical
DJI M100 UAVs as transmitters. An Ettus USRP X310 [30]
equipped with an UBX 160 USRP daughterboard is used to
capture signals at the receiver side. We fly the UAVs one at a time
at different distances of 6, 9, 12, and 15 feet from the receiver,
while they transmit. The receiver collects I/Q samples only in
the downlink 10 MHz channel where the UAV is transmitting,
as described in Section III-A2.

At each distance, we collect I/Q samples for ∼2 seconds,
pause for ∼10 seconds, and then repeat this process 3 more
times. The ∼10-second intervals of time partition the overall
received signals into 4 non-overlapping bursts, each containing
∼140 interleaved short periods of data and noise. A high-level
overview of the sequence collected at the receiver side for each
UAV at a given distance is shown in Fig. 3. To complete the
dataset, the procedure shown in Fig. 3 is collected from all
the 7 UAVs, flying at 4 different distances from the receiver.
The average calculated SNRs are approximately 33, 31, 28, and
26 dB for distances of 6, 9, 12, and 15 feet respectively.

To prepare the sequences for our deep learning framework,
we extract the portions containing data and separate them from
interleaved noise periods to form ∼140 sequences per burst.
From here on, we refer to these non-overlapping data sequences
as examples. With 7 UAVs, each having 4 distances, each dis-
tance having 4 bursts, and each burst having ∼140 examples, we
have more than 13k examples with average length of ∼92k I/Q
samples in the dataset. This complete UAV dataset is released
for future investigations.1

C. Training and Testing the Neural Network

We form our training, validation, and test sets based on the
strategies explained in the next subsection. When the sets are
formed, we calculate mean μ and standard deviation σ of the
training set, in a preprocessing step, and use them later for
normalizing the training and test batches. We train the neural
network in a per-slice basis. Slices are overlapping portions of
examples and contain consecutive raw I/Q samples. We choose
the slice size as l = 200 and feed the training set to the neural
network as batches of slices. The training batches are prepared
by Data Generator, a special class in Keras library [31].
Every time a batch is to be formed, a random set of training
examples are loaded to the memory and from them, a number of
random slices are selected. This random selection of examples
and slices, is the equivalent of shuffling the training set, without
loading all of them to the memory. It helps the neural network
see the training data in a different order in every epoch, which
contributes to training more robust models. For each batch, a
number of slices equal to “batch size” are selected from different
examples to form a batch. Therefore, each batch is a tensor
with dimensions (batch size, l, 2), with I and Q coming in two
separate channels in the last dimension. Each batch is normalized
with respect to the previously recorded mean μ and standard
deviation σ of the training set, using (1) before being fed to the

1http://genesys-lab.org/mldatasets
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Fig. 3. Overview of I/Q samples collected from each UAV for a given distance.

Fig. 4. Neural Network architectures for (a) AlexNet1D with ∼1.1 M param-
eters and (b) ResNet1D with ∼16 M parameters.

neural network.

Xnormalized =
X − μ

σ
(1)

For the neural networks, we use 1D modified versions of
AlexNet [32] (abbreviated as AlexNet1D) with ∼1.1 million
parameters, and ResNet50 [33] (abbreviated as ResNet1D)
with ∼16 million parameters. These architectures were pre-
viously successful in RF fingerprinting and modulation clas-
sification [14], [34]. Our version of AlexNet1D is a forward
convolutional neural network (CNN) with 5 blocks stacked
together. Each block consists of (i) a 1D convolutional layer with
128 filters of size of 7, followed by (ii) a 1D convolutional layer
with 128 filters of size of 5, followed by (iii) a MaxPooling layer.
The 5 blocks are followed by 2 fully connected (FC) layers of
sizes 256 and 128, respectively. The final layer is a FC-softmax
layer with the same size as the number of classes. Our version
of ResNet1D is a combination of Projection blocks and Identity
blocks stacked together. More details about both AlexNet1D and
ResNet1D are visually depicted in Fig. 4.

As this is a multi-class classification problem where among
multiple UAVs, a single UAV is to be selected as the transmitter,

we use categorical cross entropy loss. We train the neural net-
work using Adam optimizer [35] with learning rate= 0.0001. At
the end of each epoch, we test the network on the validation set.
We stop training when the validation accuracy does not improve
for 3 consecutive epochs. When the training is done, we test
the trained network with the test set. Similar to the training
process, we test the neural network on a per-slice basis. In
the test phase, each example with length LL, is sliced with a
stride = 1. Consequently, each example is fed to the neural
network as a tensor with dimensions (LL− l + 1, l, 2). Test
batches are also normalized with respect to mean μ and standard
deviation σ of the training set, as in (1).

When we feed in the test batches, the outputs of the neural net-
work are batches of probability vectors, each obtained from an
input slice. We obtain a prediction for a given slice by performing
an argmax on its corresponding probability vector. To achieve a
prediction for a given example, we combine probability vectors
of the slices in that example. We do this through 1) Probability
Sum and 2) Majority Vote [36] that are briefly summarized
below:

1) Probability Sum: We feed all the slices from a given
example to the neural network, and at the output, we sum all the
probability vectors to get a Probability Sum vector. The predicted
class for the example is obtained from the index of the element
having maximum value in the Probability Sum vector.

2) Majority Vote: We classify all the slices in an example and
we choose the class that the majority of slices vote for as the
predicted class for that example.

We note there are two ways to report accuracy [14]:
A) Slice accuracy: we divide the number of correctly predicted

slices by the total number of slices in the test set.
B) Example accuracy: we divide the number of correctly

predicted examples by the total number of examples in the test
set.

In the rest of this paper, we focus on example accuracy,
since it captures the neural network prediction for a complete
transmission (example).

D. Preliminary Experiments on UAV Classification

To empirically show the effect of imperfect hovering on the
received UAV fingerprint, we introduce two scenarios of training
and testing the neural network. We use AlexNet1D architecture,
unless specified otherwise.

1) Train on all bursts, test on all bursts: For each UAV,
each distance and each burst, we shuffle the examples
and partition the sequences by 60%, 20% and 20% for
training, validation and test, respectively. We observe a
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test accuracy of 97%. In this scenario, other examples
before/after the unseen test example may be present in the
training set. As a result, the neural network performs well,
although this procedure cannot be applied for real-time
UAV classification.

2) Train on bursts 1, 2, and 3, Test on burst 4: For each UAV,
each distance, and bursts 1, 2, and 3, we shuffle examples
and choose 90% and 10% for training and validation,
respectively. We test the trained network on the unseen
burst 4. In this scenario of training on first examples and
testing on last ones, we get 49% accuracy with AlexNet1D.
A deeper architecture like ResNet1D also yields marginal
improvement with 50% accuracy. This drop in accuracy
compared to the former scenario shows the effect of slight
UAV movements while hovering. When the transmitting
UAV hovers, the received signals are impacted over time
due to the continuous channel variations. Since the channel
effect is non-negligible, both AlexNet1D and ResNet1D
are unable to classify UAVs from unseen (future) bursts
with high accuracy.

E. Detecting a New UAV

If a trained network is tested with an example from a new
UAV, it classifies the example as one of the known classes,
inevitably. To discriminate this prediction from a “correct” old
device prediction, we use the statistics obtained from a test set
of known old devices –as also used for standard WiFi in [17]–
to label each unknown test example as “old” or “new”.

1) Overview of the Approach: Our algorithm in [17] was
originally used for new device detection in datasets where the
training and test sets are non-overlapping, but share a com-
mon distribution. To use the algorithm for new UAV detection,
after the network is trained on the legitimate (old) UAVs, an
intermediate test set containing signals from only these trained
(in-library) devices with known true labels are fed to it. As-
sume the test set has M examples each indexed with m =
0, 1, . . . ,M − 1. The example m is classified using Majority
Vote method as the predicted old class C(m), and two thresholds
are recorded:

1. Probability threshold θP (u): For each specific UAV u,
we gather the probability vectors of all the slices classified as
C(m), across all examples, in a set Pu. Then a statistic mapping
function, χ(A), is applied to set Pu, to obtain the probability
threshold for device u, represented as θP (u). This process is
repeated for all the old UAVs to achieve separate probability
thresholds for each UAV.

2. Ratio threshold θR(u): For each specific UAV u, we gather
the ratio of slices classified as C(m) in all the examples, in a set
Ru. Then, the same statistic mappingχ(A) is applied to generate
the ratio threshold for UAV u, represented as θR(u). Again, this
process is repeated for all the old UAVs.

At this point, two thresholds are calculated for each old UAV.
We now form a final unseen test set of old and new UAVs, withB
examples in total, each being indexed with b = 0,1, . . . , B − 1.
If slices from a given example b, whether new or old, are fed to
the neural network, the example will be classified inevitably as

one of the old UAVs. The predicted class for example b, noted
as ŷ(b) is called the “best guess”. In order to decide whether
example b is from an old or a new device, we calculate two
metrics:

Metric 1. Transmission prediction probability p̃(b): We collect
the probability vectors from all the slices in example b classified
as the best guess in a set P̃ (b). The set P̃ (b) is mapped to
the metric transmission prediction probability p̃(b), using the
statistical mapping function χ.

Metric 2. Estimated correct slice ratio r̃(b): We divide the
number of best guess slices by the total number of slices in
example b, for the metric estimated correct slice ratio r̃(b).

Finally, example b is labeled as new or old using (2).

y(b)ex =

{
new if

(
r̃(b) < θR(ŷ

(b))
)

and
(
p̃(b) < θP (ŷ

(b))
)

old otherwise

b = 0, 1, 2, . . . , B − 1 (2)

2) Preliminary Experiments on New UAV Detection: For de-
tecting new UAVs, we follow the steps explained in Section III-
E1. For the statistics mapping function χ, we use (3), which
showed the best performance among various options explored
in [17].

χ(A) = avg(A)− std(A) (3)

with avg and std being the average and standard deviation
functions, respectively.

Among the 7 UAVs, without loss of generality, we choose
UAV4 as the new device and other 6 UAVs as old devices. To
simulate the real-world situation where the new UAV signal
appears in the future burst 4, we form our training/validation
sets using old UAV examples in bursts 1, 2, and 3. We shuffle
the examples and use 90% of them as training set and 10% as
validation set. We train a single AlexNet1D on the training set,
and use the validation set as the old device intermediate test
set to record thresholds. We form the new device test set using
examples from UAV4 in burst 4, so that similar to the real case
scenario, the new UAV is also from an unseen burst. In this case,
the new UAV detection accuracy is defined as the number of
examples with y(b)ex labeled as “new,” divided by the total number
of examples in the new device test set. Our results show a new
UAV detection accuracy of 68% with AlexNet1D, meaning a
single neural network is not able to detect new UAVs from an
unseen burst, with high accuracy. However, as we will show
later, this accuracy can be boosted up to 99% using this same
method, when combined with our multi-classifier approach.

IV. PROPOSED ROBUST MULTI-CLASSIFIER APPROACH

In this section, we introduce our multi-classifier approach
with a score-based two-level aggregation method that returns a
fused decision for each test example. Additionally, we describe
a data augmentation method to increase robustness during train-
ing. For a robust detection of new hovering UAVs, we combine
the new device detection algorithm with the multi-classifier
scheme.
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Fig. 5. Change of channel over time in two different cases.

Fig. 6. Forming training sets for identical but independent neural networks in the multi-classifier scheme.

A. Multi-Classifier Scheme

As we experimentally showed in Section III-D, UAV hovering
changes the wireless channel significantly over time. To gain
deeper insights on how channel conditions vary in the case of
hovering UAVs, as compared to a static radio case, we conduct
additional experiments. Since the UAVs used in this paper trans-
mit Lightbridge proprietary waveforms, we use software defined
radios (SDRs) transmitting standard WiFi to study the estimated
channel in two different cases. We generate a waveform with
standard protocol of IEEE WiFi 802.11a with 5 MHz bandwidth,
using MATLAB WLAN toolbox. We transmit the waveform
over the air using an Ettus USRP X310 radio as the transmitter
hardware, in two different situations described below:

1) Static Tx: We place the transmitter statically on the ground.
2) Hovering Tx: We mount the transmitter on an M100 UAV,

fly the UAV and transmit signals as the UAV hovers in its
place.

For both cases, we use an Ettus USRP X310 radio placed
on the ground, as the downlink receiver, to collect I/Q samples
and estimate the channel. With FFT size 64, if we eliminate the
guardband subcarriers, we have 52 channel coefficients for each

WiFi packet. We calculate the magnitude of channel coefficients
for each packet at three different instants of 0, 1.9 ms, and 596 ms
in Fig. 5. It is observed that in case of a static transmitter, the
channel does not change much during 596 ms. However, in case
of a hovering UAV, channel changes drastically from the starting
instant 0 to the 596 ms mark.

Thus, when a hovering UAV is transmitting, the rapid changes
in wireless channel distort the transmitted fingerprint with
rapidly changing transforms. This causes different snapshots of
the received signal to have different distributions of I/Q samples.
Since data distribution varies over time, instead of a single neural
network trained on all data parts, we independently train multiple
neural networks each on non-overlapping portions of the dataset.
As an illustrative example, Fig. 6 shows a specific case of training
12 independent neural networks with different portions of bursts
1, 2, and 3. In this case, each burst is equally partitioned into
4 sets to form 12 (=3 × 4) non-overlapping training sets. We
test the trained networks on the examples from the unseen burst
4 by feeding slices from each example to all the trained neural
networks and combine their predictions using an aggregation
method described next.
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B. Aggregation Method

1 Aggregating predictions at the output of each neural net-
work: As explained in Section III-C, in the test phase, two previ-
ous methods of Probability Sum and Majority Vote yield ∼50%
accuracy for the hovering UAV dataset (more in Section V).

In the proposed method for the first level of aggregation, we
further divide each (relatively long) example of length ∼92k
samples, to K = 10 equal length sub-examples. We slice each
sub-example with index k (k = 0, 1, . . . ,K − 1) as explained
in Section III-C, and feed it to the trained neural network in a
per-slice basis. If each sub-example with length L is sliced with
slice size l, the whole sub-example yields (L− l + 1) slices.
Consequently, at the output of the neural network, we have
L− l + 1 probability vectors p(k,i)slice for kth sub-example, with i
being the slice index (i = 0, 1, . . . , L− l). We make predictions
for each sub-example using Probability Sum method. Here, the
sum of probability vectors p(k,i)slice for all slices in the sub-example

k yields the Probability Sum vector V (k)
sub−ex, as in (4).

V
(k)
sub−ex =

L−l∑
i=0

p
(k,i)
slice k = 0, 1, 2, . . . ,K-1 (4)

The predicted class C(k)
sub−ex for the sub-example with index

k, using Probability Sum method is shown in (5).

C
(k)
sub−ex = argmax(V

(k)
sub−ex) k = 0, 1, 2, . . . ,K-1 (5)

At this point, each sub-example with indexk, yieldsL− l + 1
slices, among which M

(k)
sub−ex ≤ (L− l + 1) are classified as

class C(k)
sub−ex, as in (6).

M
(k)
sub−ex =

L−l∑
i=0

γ(slice(k,i))

γ(slice(k,i)) =

{
1 if argmax(p

(k,i)
slice) = C

(k)
sub−ex

0 otherwise
(6)

For each sub-example with index k, we define S(k)
sub−ex as the

maximum value of vector V (k)
sub−ex divided by total number of

slices in the sub-example, which is an indicator of the average
prediction probability for the sub-example (7).

S
(k)
sub−ex =

max(V (k)
sub−ex)

(L− l + 1)
k = 0, 1, 2, . . . ,K-1 (7)

For each sub-example with index k, we calculate a score, as
shown in (8), based on which we do the first level of aggregation.

score
(k)
sub−ex = S

(k)
sub−ex ×M

(k)
sub−ex k = 0, . . . ,K-1 (8)

In the last step, we take a vote among sub-examples: We
choose the maximum among the list of score(k)sub−ex as the score
of the whole example, scoreex, as shown in (9). We select the
corresponding sub-example as the winning sub-example, and its
predicted classCsub−ex, as the predicted classCex for the whole

Fig. 7. Proposed method of sub-example voting for the first level of
aggregation.

example, as in (10).

scoreex = max

(
K−1⋃
k=0

score
(k)
sub−ex

)
(9)

Cex = C

(
argmax

(
K−1⋃
k=0

score
(k)
sub−ex

))

sub−ex (10)

In summary, we make a prediction for an example at the
output of one neural network, by comparing scores of its sub-
examples and selecting a winning sub-example. The score for
each sub-example relies on the average prediction probability
and the number of slices classified same as the sub-example.
Selecting winning sub-examples helps us better identify the
wrongly predicted sub-examples and suppress their votes. As
the sub-examples vote with their scores, to determine a winning
sub-example, we refer to this method as sub-ex voting. An
overview of this scheme is depicted in Fig. 7.

2. Aggregating the predictions from multiple NNs: Previ-
ously, we explained how we make a decision for an example at
the output of a neural network, as the first level of aggregation.
Here we explain how to combine results from multiple neural
networks in the second level of aggregation.

In the second level of aggregation, we need the scoreex and
Cex recorded from all the neural networks. Assume we have
J trained neural networks, classifying the same example in
parallel. After the first level of aggregation, at the output of
the neural networks, we have a list of J scores, scoreex and J
predicted classes Cex (11):

scoreex_list =
J−1⋃
j=0

score(j)ex

Cex_list =
J−1⋃
j=0

C(j)
ex (11)
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Fig. 8. The Steps of determining the size of multi-NN scheme.

We follow the same logic of using scores to take a vote
between neural networks, as we did for sub-examples, and select
the classifier with the highest score, as the winning classifier. The
class predicted by that classifier is selected as the predicted class
C for the input example, as shown in (12).

C = Cex_list(argmax(scoreex_list)) (12)

For calculating the accuracy of the multi-classifier scheme,
we follow the equations (5)–(12) for all the examples in the
test set, and ultimately record combined predicted classes C
for each example. Classification accuracy of the multi-classifier
is calculated by dividing the number of correctly predicted
examples by the total number of test examples.

C. Choosing the Size of the Multi-Classifier Scheme

We propose a step-by-step dataset partitioning process to find
the number of neural networks that compose the multi-classifier
scheme. Without losing generality, for our experiments we use
AlexNet1D architecture as each individual classifier.

We start by using first-arriving I/Q sequences as training set
(called as set) and last-arriving as an intermediate test set. We
initialize the number of neural networks in the multi-classifier
scheme (J) equal to 1. The goal is to determine J by monitoring
the accuracy improvement after each training/testing process.
To do this, we follow the steps below:

1) We sort the examples in the set(s) in temporal order, and
split them into two parts. Now each part becomes a new
set, and we update J by doubling it.

2) We train J independent neural networks on 90% of each
set. As explained in Section III-C we choose 10% of each
set for validation to decide when to stop training.

3) After the neural networks are fully trained, we test
them on the unseen intermediate test set. We use the
proposed two-level aggregation method (explained in
Section IV-B) to calculate the multi-classifier accuracy.

4) Next, we check to see if the accuracy improvement is less
than or equal to 2%. If yes, we stop the partitioning process
and report J as the number of neural networks required
in the multi-classifier scheme. If no, we go to step 1 and
repeat the steps.

Fig. 8 demonstrates an overview of the dataset splitting
process for determining the number of neural networks in the
multi-classifier scheme. Each loop that corresponds to going
through steps 1–4 is considered a round. Since, in each round
the former set is halved and the number of classifiers doubles,
the algorithm reports J after log2 J rounds.

The stopping criterion of 2% can be increased or decreased
depending on the user’s need. Increasing this criteria causes
an earlier stopping point, which results in lower J and lowers
final accuracy. Decreasing it, however, potentially increases final
accuracy at the expense of larger number of classifiers, resulting
in longer training/testing time in the multi-NN scheme.

D. Data Augmentation (DA)

Data augmentation (DA) is a means to expand the training
set by modifying the original training samples in a principled
manner [37], [38]. While collecting more training data that
contains all the variations is expensive, DA can artificially create
those variations in the original training set. Moreover, our DA
method obviates the need of storing a large and varied training
set on disk, since the variation injection happens on the flight in
the training pipeline.

In our method of DA, first we normalize the training batch
X according to mean μ, and standard deviation σ of the com-
plete training set using (1). Next, the normalized batch passes
through the DA block before being fed to the neural network
(See Fig. 9). The block contains a multi-tap complex FIR filter
that is convolved with the data batch passing through it. The
convolution happens in “same” mode, which means each slice is
zero padded before passing through the filter, and the dimensions
of the data batch do not change after filtering. The filter taps
are independent and chosen from the same distribution. For the
purpose of this paper, we choose an 11-tap FIR filter and we
draw its coefficients from complex Gaussian distribution with
mean μh = 0 and standard deviation σh = 0.125. However, FIR
parameters such as number of taps, mean, and standard deviation
can be varied for different datasets to optimize the method and
achieve the best results.

In each epoch, when each data batch is loaded by Keras
Data Generator [31], a new set of filter coefficients are
drawn from the distribution. In this way, the augmentation block
provides extensive variety to the training set over epochs. The
resulting trained model is less likely to over-fit, and it is more
robust compared to a model obtained from classical training
without DA.

For testing a model that is trained with DA, in order to
maintain the same scale for the test data as the training data,
after the conventional normalization in (1), we need to filter
the test data, too. For this purpose, we use FIR filters with
the same parameters (i.e., number of taps, mean, and standard
deviation) as the FIR parameters in the training phase. To remove
the effect of random FIR choice in the test phase, instead of
just one filter per batch, we use a number of different filters
per test slice. Since the classification decision is made on an
ensemble of resulting outputs, we call this method, ensemble
FIR. As shown in Fig. 10, per test slice in the test batch, we draw
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Fig. 9. Data augmentation training phase using complex filter being convolved with each data batch.

Fig. 10. Ensemble FIR method with ensembleFactor=10 is used in the test
phase of data augmentation scheme.

ensembleFactor=10 different sets of FIR taps from the same
distribution. We pass the slice through these 10 different filters
and stack them together, in the filtered batch. In this case, if the
original batch contains L− l + 1 slices, the filtered batch will
have 10 × (L− l + 1) slices. Consequently, the neural network
yields 10 × (L− l + 1) probability vectors. Same as before, we
use Probability Sum method to aggregate p

(k,i)
slice and obtain a

prediction for each sub-example. In this case, probability sum
vector in (4) changes to (13).

V (k)
aug =

(10×(L−l+1)−1)∑
i=0

p
(k,i)
slice k = 0, . . . ,K-1 (13)

Recall that in our multi-classifier scheme, we use the sets
in Fig. 6 to train J neural networks. The new training sets are
considerably smaller and less varied than the original training
set that contains all of bursts 1, 2, and 3. In such situations,
DA is a good candidate to prevent trained neural networks from
over-fitting.

E. Improving New UAV Detection Using Multi-Classifiers

Here, we improve the new device detection algorithm dis-
cussed in Section III-E1, by combining outputs from all neural
networks in the multi-classifier scheme. We assume we have
J neural networks trained and tested on old UAVs, with 2
thresholds being recorded per neural network, and per UAV,
as explained in Section III-E1. We also keep the assumption of
having K sub-examples in each example. In this case, for each
example, we have J lists as in (14) each containing K labels of

“new” or “old” represented as y(j,k)sub−ex.

old-new-list(j) =
K−1⋃
k=0

y
(j,k)
sub−ex j = 0, 1, . . ., J − 1 (14)

The goal of aggregation is to combine these J ×K values in a
way to achieve a single yex that determines whether the example
is from an old UAV or a new one. Since the labels can only get 2
values in new UAV detection (either “new” or “old”), instead of
the rather complex score-based aggregation method (discussed
in Section IV-B), we use a simple Majority Vote at both levels
of aggregation.

At the first level of aggregation, we identify an example as
a new UAV example, if the majority of its sub-examples (more
than K

2 ) vote for it to be “new”. In (15) y(j)ex is the “old” or “new”
label for each example at the output of new device detection
algorithm.

y(j)ex =

{
new if old-new-list(j).count(“new”) > floor(K2 )

old otherwise

(15)

At the second level of aggregation, we create a list of J

members of all the labelsy(j)ex for one specific example, as in (16).

old-new-list(total) =
J−1⋃
j=0

y(j)ex (16)

We take another Majority Vote this time across J labels to
determine the final ensemble prediction yex for each example,
as in (17).

yex =

{
new if old-new-list(total).count(“new”) > floor(J2 )

old otherwise

(17)

In the next section, we present numerical results for all the
proposed methods and compare them against baseline results.

V. PERFORMANCE EVALUATION

We use our UAV dataset collected from 7 hovering UAVs
(Section III-B) to show numerical results for the proposed
schemes. First, we show the contribution of our first level of
aggregation (sub-example voting) on individual neural networks
of AlexNet1D and ResNet1D. Second, we run the algorithm
explained in Section IV-C on the UAV dataset, and determine
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Fig. 11. Comparison in classification accuracy in Single-NN and Multi-NN
schemes using different aggregation methods. In Multi-NN, “PM” is short for
Probability Sum+Majority Vote, “MM” is short for Majority Vote+Majority Vote
and “2level” indicates our proposed 2-level score-based aggregation.

the number of neural networks in the multi-classifier scheme.
Third, we show the results of the proposed multi-classifier
scheme with two levels of aggregation. Fourth, to show the
contribution of DA, we retrain the individual neural networks in
the multi-classifier scheme using DA, and report their decisions
using the two-level aggregation. Last, we show the contribution
of multi-classifier scheme on detecting new UAVs with high
accuracy.

As mentioned in Section III-C, in all the experiments we use
slice size of l = 200, and categorical cross entropy loss function,
to train the neural networks.

A. Sub-Example (Sub-Ex) Voting

As explained in Section IV-B, the proposed sub-ex voting is
an aggregation method for determining the prediction for an
example within one neural network. To compare the sub-ex
voting method with previously existing aggregation methods
for a single neural network, we train two different architectures
of AlexNet1D and ResNet1D on bursts 1,2 and 3 and we test
them on burst 4. For combining the probability vectors at the
output of each neural network, we compare three methods of
1) Probability Sum, 2) Majority Vote, and the proposed 3)
sub-ex voting. Fig. 11(a) shows that the results of Probability
Sum and Majority Vote are in the same range of ∼50% for
this dataset. Compared to these methods, our proposed sub-ex
voting, improves the accuracy to 61% and 63% for a single
AlexNet1D and ResNet1D, respectively.

TABLE I
INTERMEDIATE RESULTS FOR THE PROCESS OF DETERMINING THE SIZE OF

MULTI-NN SCHEME

B. Determining the Size of Multi-NN Scheme (J)

To use the method described in Section IV-C for our UAV
dataset, we leave aside burst 4 which is our final test set, to
prevent information leakage from this burst into the process of
determining J . Bursts 1 and 2 which are the first arriving bursts,
serve as initial training set, and burst 3 which is collected after
them, serves as the intermediate test set. In round 1, we create 2
sets, containing complete burst 1 and burst 2, respectively. We
train 2 separate neural networks on the two sets and test them
on the unseen burst 3. We use the two level aggregation method
to calculate the final multi-classifier accuracy. Individual and
multi-classifier accuracies for this round are shown in Table I(a).
In round 2, we create 4 sets by dividing each previous set into
two parts. The 4 sets contain first half of burst 1, second half
of burst 1, first half of burst 2, and second half of burst 2,
respectively. Consequently, we train 4 neural network on these
sets and test them on burst 3. Individual and multi-classifier
accuracies for round 2 are shown in Table I(b). In round 3,
we create 8 sets again by dividing each previous set into two
parts. Therefore, 8 neural networks are trained on the 8 sets
ranging from the first quarter of burst 1 to the fourth quarter of
burst 2. The test results on the unseen burst 3 in round 3 are
shown in Table I(c). The splitting process stops when accuracy
improvement diminishes to 2% after 3 rounds and the final J
is calculated as 8. At this point, each of bursts 1 and 2 are
partitioned into 4 sets.

For the final training/testing, we bring burst 3 into the train-
ing scheme, so that we have more sets and larger number of
classifiers. Same as bursts 1 and 2, burst 3 is also partitioned
into 4 sets, which yields 12 sets in total. The final outcome
of dataset partitioning flow is shown in Fig. 6, where we train
J = 12 independent but identical classifiers on different portions
of bursts 1, 2, and 3. We finally test all of the networks on the
unseen burst 4.

C. Multi-Classifier With Two Levels of Aggregation

As explained in Section V-B, for the multi-classifier scheme,
we train 12 identical AlexNet1Ds (less complex network in
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TABLE II
TRADE-OFF BETWEEN COMPLEXITY OF THE SCHEMES AND FINAL ACCURACY

Fig. 4(a)) in parallel. At test time, we feed each example to
all the 12 trained neural networks, and use three methods to
combine their results:
� As the first level of aggregation, we combine results of

sub-examples, using Probability Sum. At the second level,
we use Majority Vote among the 12 neural networks in the
multi-classifier scheme.

� We use Majority Vote in both levels of aggregation, for
combining both sub-example results and multi-classifier
results.

� We use the proposed two-level aggregation method to
combine the results.

Fig. 11(b) shows the numerical results for these three cases.
The combination of Probability Sum and Majority Vote is
shown as “PM” (45% accuracy), Majority Vote at both levels
as “MM” (46% accuracy), and the two-level aggregation as
“2level” (91% accuracy). The two-level aggregation improves
the accuracy for multi-classifier scheme by more than 100%.
Moreover, our score-based multi-classifier improves the accu-
racy of single classifiers using Probability Sum or Majority Vote
(Fig. 11(a)). This improvement is 85% and 82% for AlexNet1D
and ResNet1D, respectively.

Interestingly, the accuracy improvement in multi-classifier
approach, compared to single ResNet1D, comes at no cost
of increase in model size. There are ∼16M and ∼13.2M
(=12 × 1.1) parameters, in ResNet1D and our multi-classifier
scheme, respectively. In other words, the multi-classifier scheme
with 12 AlexNet1Ds still has fewer parameters than a single
ResNet1D, even though it yields 82% improvement in accuracy
of ResNet1D. This accuracy boost, however, comes at a cost
of longer training/testing process. As shown in Table II, the
training and test time increases from 23 and 58 hours for single
AlexNet1D and ResNet1D, respectively, to 64 hours for the
multi-classifier scheme.

The benefit of our method comes from learning different data
sequence distributions collected over time in parallel. At test
time, in both levels of aggregation, we suppress the least certain
predictions and keep only the most certain one.

D. Data Augmentation (DA)

To show the contribution of DA towards improving the accu-
racy of individual neural networks, we independently retrain
each of the 12 classifiers on sets shown in Fig. 6, with the
DA block included in the training pipeline. We train the neural

networks for 50 epochs to ensure sufficient variations of training
data is provided to the network. In the test phase, we use the FIR
ensemble method to test the classifiers on the unseen burst 4,
and calculate individual accuracies, as well as the multi-classifier
accuracy using the two-level aggregation method. The individual
accuracies without and with augmentation block, and their cor-
responding multi-classifier accuracies can be seen in Table III.
It is observed that DA improves the overall accuracy from 91%
to 95%.

Fig. 12 further shows the confusion matrices for four different
cases of (a) a single AlexNet1D being trained on bursts 1, 2, 3
and tested on burst 4 using Probability Sum for per-example
accuracy (49% accuracy), (b) same case with DA in the pipeline
(56% accuracy), (c) multi-classifier scheme with two levels of
aggregation (91% accuracy), and (d) same case with DA in the
pipeline (95% accuracy). We can see in the latter case, diagonal
dark cells have formed, which indicate correct predictions.

In order to show the effect of DA on over-fitting of the neural
network, we do another experiment. We train a network with set1
in Fig. 6 as an example (NN1). At the end of each training epoch,
we test the model on the unseen burst 4, in order to keep track
of loss and slice accuracy of the test set over epochs. We do this
process without and with DA block. Fig.s 13(a) and 13(b) show
the gap between training and test loss reduces from 6.54 to 1.77,
when DA is used, which shows a reduction in over-fitting. An
increase in the test loss over epochs that we observe in Fig. 13(a)
and 13(b) is not necessarily equivalent to a decrease in test
accuracy. This increasing trend could specially be observed in
our case of training on set1 and testing on burst 4, where training
and test sets are collected under different channels and different
distributions. As it can be seen in Fig. 13(c) and 13(d), test
accuracies are actually improving over epochs, in both cases of
without and with DA. The important point is as seen in Fig. 13(c),
without DA training accuracy quickly increases, however test
accuracy does not increase with it. This means the model is doing
well on the training data, however, it cannot well generalized to
the unseen test set, and hence, over-fitting is happening. This
adverse situation can be ameliorated by augmenting the training
data as seen in Fig. 13(d). In this case, the model is more robustly
trained with DA, which leads to an increase in slice accuracy
from 28% to 33%. As shown in Table III, the example accuracy
corresponding to this case (NN1) has even a larger increase from
30% to 40% with DA.

E. New UAV Detection

To implement the new UAV detection method along with
multi-classifier scheme, as explained in Section IV-E, we choose
UAV4 as the new UAV, and other 6 UAVs as the old ones (same
as Section III-E). We exclude signals of UAV4 from sets shown
in Fig. 6, and use 90% of each set as training set, and 10%
as validation set. We train J = 12 networks on the old UAV
training sets and test them on the old UAV validation sets to
record thresholds, as explained in Section III-E1. We form the
new UAV test set using examples from UAV4 in burst 4, so
that the new UAV signal is also from an unseen burst. After
comparing the ratios with the thresholds, we obtain individual
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TABLE III
INDIVIDUAL AND MULTI-NN CLASSIFICATION ACCURACY WITHOUT AND WITH DATA AUGMENTATION (DA) AND NEW UAV DETECTION

Fig. 12. Confusion matrices of test on the unseen burst 4 for four different training schemes.

Fig. 13. Loss and slice accuracy of training and test sets per epoch for NN1 without and with data augmentation.
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TABLE IV
COMPARING ACCURACY IN SINGLE NN AND MULTI-NN SCHEMES FOR UAV

CLASSIFICATION AND NEW UAV DETECTION

accuracies for new UAV detection, shown in Table III. As shown
in this table, the multi-classifier accuracy for new UAV detection
equals 99%.

To show how the new UAV detection algorithm performs
when an old UAV is fed to it, we do another experiment. We
choose UAV6 in burst 4 as an old device in the unseen burst, and
we feed its signals to the 12 neural networks trained in this sub-
section. We repeat the step of comparing ratios and thresholds
for each neural network to decide whether the input comes from
a new UAV or an old one. Then we use the aggregation method to
calculate the multi-classifier accuracy. It should be noted that the
old UAV is from the unseen burst 4, which adds to the difficulty
of the task. The results shown in Table III illustrate that 11%
of examples from the old UAV are incorrectly categorized as
new UAV examples. Even though the true negative rate of our
new UAV detection algorithm is 89%, the high 99% rate of true
positives can effectively detect signals from outlier (new) UAVs.

Table IV shows the improvement of accuracy in multi-
classifier scheme compared to single classifier. In all cases,
training is done on bursts 1, 2, and 3, and test is done on the
unseen burst 4. We see that classification accuracy improves
from 50% for the best case of single classifier with previously
existing methods to 95% with our multi-classifier scheme using
two levels of aggregation and data augmentation. Moreover, as
shown in Table IV, the 99% new UAV detection accuracy is
45% improvement over the single classifier result of 68% that
we reported in Section III-E.

VI. CONCLUSION

In this paper, we addressed the problem of classifying hov-
ering UAVs that emit proprietary/unknown waveforms using
RF fingerprinting with deep neural networks. We empirically
showed the adverse effect of imperfect hovering on classification
accuracy for 7 UAVs, which initially resulted in a low 49%
accuracy using conventional single architecture methods. To
tackle this problem, we proposed a multi-classifier scheme to
separately learn from different dataset portions. To combine
test results at the output of the neural networks, we proposed a
novel two-level score-based aggregation method, that returned
an overall accuracy of 91%. We used data augmentation to
improve individual accuracies of the neural networks in the
multi-classifier scheme, which ultimately boosted the classi-
fication accuracy upto 95%. Furthermore, our multi-classifier
scheme yielded a new UAV detection accuracy of 99%, giving
a high confidence that this approach will work in real-world
applications.
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