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AbstrAct

RF fingerprinting involves identifying character-
istic transmitter-imposed variations within a wire-
less signal. Deep neural networks (DNNs) that do 
not rely on handcrafting features have proven to 
be remarkably effective in fingerprinting tasks, as 
long as the channel remains invariant. However, 
DNNs trained at a specific location and time per-
form poorly on datasets collected under different 
channel conditions. This article proposes a data 
augmentation step within the training pipeline 
that exposes the DNN to many simulated channel 
and noise variations that are not present in the 
original dataset. We describe two approaches for 
data augmentation. The first approach is applied 
to the “transmitter data” when transmitter side 
data (i.e., pure signals without channel distortion) 
is available. The second approach is applied to 
the “receiver data” when only a passive dataset 
is available with already over-the-air transmitted 
signals. We show that data augmentation results 
in 75 percent improvement in the former case 
with a custom-generated dataset, and around 
32–51 percent improvement in the latter case on 
a 5000-device WiFi dataset, compared to the case 
of non-augmented data fed to DNNs.

IntroductIon
RF fingerprinting is a process to identify radios 
by detecting a characteristic signature embedded 
within their transmitted electromagnetic waves. 
Traditionally, this process involves handcrafting 
features that represent salient hardware charac-
teristics manifesting in the transmission. Howev-
er, identifying the most discerning features from 
a pool comprising a multitude of physical radi-
os is challenging. It is protocol-specific, and thus 
requires domain knowledge and advanced test 
equipment. As opposed to this, deep-learning-
based methods are gaining traction due to their 
ability to automatically identify hardware fea-
tures in a protocol-independent fashion: only raw 
in-phase (I) and quadrature (Q) components of 
the samples suffice for detection, which consider-
ably simplifies the end-user application of RF fin-
gerprinting. While many works [1–3] have made 
substantial strides in radio fingerprinting using raw 
IQ samples with deep neural networks (DNNs), 
they report classification accuracy only with data-
sets where the training set and the test set are 
collected under very similar wireless channels and 
environmental conditions.

The wireless channel is a major contributor 
to accuracy degradation in DNN-based RF fin-
gerprinting. It effectively scales up/down and 
rotates the IQ constellation due to attenuation, 
reflections, and delays. These highly complex 
interactions are unique to a particular channel 
and may not repeat in exactly the same way in 
future channel conditions. Therefore, with a train-
ing set collected under particular channel con-
ditions, the DNN ultimately ends up learning a 
channel-distorted fingerprint instead of the pure 
inherent fingerprint. A DNN trained thusly yields 
poor accuracy if tested under a different channel. 
As evidence, our prior work, ORACLE [2], shows 
99 percent classification accuracy for 16 software 
defined radios (SDRs) when training and test sets 
are collected under the same channel conditions. 
However, this accuracy drops to 56 percent when 
the DNN is tested under a different channel.

Popular methods to overcome the channel 
effect are transfer learning [4, 5] and re-training 
[4]. These solutions are not always possible, as 
training during deployment is resource and time 
consuming. Therefore, a means of making the 
neural network resilient to unseen channel and 
noise variations is of paramount importance. 
More about these methods is discussed in the 
next section.

In the image processing domain, a common 
approach to make the neural network resilient to 
a specific type of variation and avoid overfitting is 
data augmentation [4], that is, expanding the train-
ing set with additional samples which resemble 
the outcomes of that variation. For example, geo-
metric transformations such as rotating, flipping, 
and re-scaling the training samples are common in 
image processing [4]; so is adding salt-and-pepper 
and Gaussian noise [6]. However, these image 
transformations do not account for the inherent 
properties of wireless signals, and are not suitable 
for the wireless domain.

The main contribution in this article is to pro-
pose a novel methodology for data augmenta-
tion in the RF domain. In our method, the training 
data is augmented in a principled manner that 
makes the trained DNN resilient to channel varia-
tions and noise levels. Data is sequentially passed 
through a channel model and a noise model. 
The channel model is a finite impulse response 
(FIR) filter — with filter taps drawn from a specif-
ic distribution — being convolved with the signal 
passing through it. The noise model is a noise gen-
erator, producing random values from a Gauss-
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ian distribution with variance proportional to the 
noise power. These random values are summed 
with the output of the channel model. The DNN 
trained with the augmented training set yields a 
channel-and-noise-resilient neural network for RF 
fingerprinting.

Our contributions are as follows:
• We propose a data augmentation method 

integrated within a deep learning pipeline for 
channel-resilient RF fingerprinting on both 
cases of “transmitter data” (i.e., transmitter 
data accessible) and “receiver data” (i.e., 
only a passive received dataset is available). 
The DNN trained with this approach per-
forms accurate RF fingerprinting even under 
unseen channels.

• We provide a simulated dataset generated 
in MATLAB using WiFi 802.11a PHY frames 
for 10 virtual transmitters and different sig-
nal-to-noise ratio (SNR) levels. In addition, 
we show how “receiver-side” augmentation 
improves classification accuracy in a DAR-
PA-provided 5000-WiFi-device dataset.

• For receiver-side augmentation, we provide 
a discussion on the strategies for selecting 
the augmentation parameters that retain the 
scale of the original signals so that the nor-
malized test set can be fed to the DNN with-
out any augmentation. We also highlight the 
open research challenges in this area.

relAted Work
Among the large body of work exploiting DNNs 
for RF fingerprinting, we survey those approaches 
that attempt to overcome the drop in classifica-
tion accuracy when the channel changes between 
training and test sets.

ORACLE [2] works on the receiver-side data, 
where it equalizes the received data before form-
ing training and test sets. Equalization estimates 
and compensates for the effect of the channel. 
However, this approach needs full knowledge 
of the waveform (i.e., modulation, sampling rate, 
and frame structure). Furthermore, it requires 
preprocessing the IQ samples, which increases 
delays. The data augmentation method proposed 
in this article, instead, can be applied to raw IQ 
samples without any prior knowledge about the 
waveform.

DeepRadioID [7] finds an FIR filter at the trans-
mitter side to negate the channel. The FIR filter 
at the transmitter side is optimized based on the 
current channel conditions and the transmitter’s 
characteristics to synthesize a filtered waveform. 
The overall outcome of this step is that the FIR fil-
ter makes the transmitters more distinguishable to 
the trained convolutional neural network (CNN). 
However, a new FIR filter must be computed for 
each transmitter every time the channel chang-
es. This step is computationally heavy as it relies 
on back-propagation within the trained CNN to 
identify the optimal filter taps. Moreover, it needs 
a reliable backchannel to communicate filter taps 
obtained at the receiver to the transmitter. As 
opposed to this, data augmentation requires nei-
ther any live processing in the field nor any receiv-
er-transmitter coordination. 

Data augmentation specifically for wireless 
using generative adverserial networks (GANs) is 
proposed in [8]. The authors introduce variations 

in the training set by generating synthetic data 
that resemble the original training set. However, 
GANs may not be suitable to train channel-resil-
ient neural networks, since the channel-distorted 
signals do not resemble the original data. Instead, 
our data augmentation scheme creates distortions 
similar to channel and noise-induced effects in the 
original training set.

dAtAset GenerAtIon And  
trAInInG the dnn

In this section, we describe the two datasets 
used in this article, the steps for data genera-
tion and pre-processing, and the neural network 
architectures.

custom-GenerAted dAtAset

We use MATLAB Communications Toolbox to 
simulate 10 virtual radios.

We use a classical transmitter chain and mod-
ify it by introducing RF impairments that are 
seen in actual radio hardware. We set different 
levels of IQ imbalance, and each choice results 
in one distinct virtual radio (simply abbreviated 
as r1 to r10). While real radios have a combina-
tion of impairments, we focus on IQ imbalance 
as described in [2]. RF fingerprinting aims to dis-
tinguish these 10 radios using the received IQ 
samples. To create 10 virtual radios, we vary the 
amplitude imbalance from 1 to 5.5 dB with steps 
of 0.5 dB and phase imbalance from 1° to 82° 
with steps of 9°. Average bit error rate for these 
IQ imbalance values is 0.0031 for SNR > 4 dB, 
which ensures the impairments do not disrupt the 
communication [2, 3].

Each radio transmits IEEE 802.11a WiFi 
frames generated via the MATLAB WLAN tool-
box. For each payload, we modulate a random 
bit sequence with quadrature phase shift keying 
(QPSK) modulation and 1/2 coding rate. These 
packets, unmodified by the wireless channel, are 
recorded at the transmitter side. We refer to this 
dataset as TxData from here on.

Next, we simulate different instances of an 
indoor wireless channel using a 9-tap wlanTGn 
channel model implemented in the WLAN tool-
box. Different instances of wlanTGn channel are 
obtained by varying the “channel seed” for each 
transmission. We vary the SNR from –10 to 20 dB 
with steps of 2 dB by changing the additive white 
Gaussian noise (AWGN) level. At each SNR level, 
a given radio transmits WiFi packets over a spe-
cific instance of the channel until we collect 19.6 
million IQ samples from that radio at the receiver 
side. This process is performed for 10 radios at 16 
SNR levels. We refer to this dataset as Day1, emu-
lating the captured transmissions from 10 radios 
on a given day. We further repeat this one more 
time, providing dataset Day2. This entire custom 
dataset including TxData, Day1, and Day2 is avail-
able in our collection [9].

dArPA dAtAset

Our simulated dataset described above is 
used to demonstrate data augmentation at the 
transmitter side. However, in many situations, 
we have access only to raw IQ samples at the 
receiver side, which have already traversed a 
wireless channel. To show how augmentation 
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works in this case, we use a dataset provided by 
the Defense Advanced Research Project Agen-
cy (DARPA). While this dataset has dissemina-
tion restrictions, it contains signals from 50, 250, 
500, and 5000 WiFi devices transmitting IEEE 
802.11a/g protocol. These datasets are collected 
“in the wild” and contain on average 166 exam-
ples per device. There are 10,900 to 110,000 
examples in the training set, and 2750 to 30,000 
examples in the test set, depending on the num-
ber of devices. Each example corresponds to an 
independent transmission and has an average 
length of ∼18k IQ samples.

dnn ArchItectures And trAInInG

We use three different DNN architectures in this 
article, which are shown in Fig. 1. Among them, 
CNN1 is a feed-forward CNN with ∼1.1M param-
eters that previously performed well for RF finger-
printing [10] and modulation classification [11]. 
CNN2 is a more complex feed-forward CNN with 
∼7.9M parameters, and ConvRNN is a convo-
lutional recurrent neural network with a Sim-
pleRNN layer and ∼1.1M parameters. We train 
the neural networks using Adam optimizer with a 
learning rate of 0.0001.

Learning on the Custom Dataset: We next 
describe the data preprocessing steps before 
feeding the IQ samples to the DNN. The data-
set corresponding to any given Day consists of 
signal transmissions from 10 radios collected at a 

fixed SNR from a total of 16 distinct levels. Each 
of these transmissions comprises a sequence of 
19.6 million IQ samples. Thus, we have 10  16 
= 160 sequences for each Day. We partition each 
sequence into non-overlapping sets of training 
(60 percent), validation (20 percent), and test (20 
percent). Each set is further divided into sever-
al non-overlapping examples of length L to form 
independent transmissions. Each example yields 
L – l + 1 overlapping subsequences, referred to 
as slices, by sliding a window of length l along 
it [10]. The sliding window approach enhances 
the shift invariance of the features learned by the 
DNN [10]. We set each example to be of size L = 
2000 to ensure it is long enough to yield multiple 
slices of length l = 198. 

During training, we load a set of examples 
using Data Generator class from Keras library. 
Inside the Data Generator, 128 random slices 
with length 198 are chosen from random exam-
ples to form a data batch. The random selection 
of examples and slices in every epoch contrib-
utes to training more robust deep learning models 
[10]. Each data batch forms a tensor with dimen-
sion (128,198,2), where I and Q information is 
included via separate channels in the last dimen-
sion (Fig. 1).

We train CNN1 in Fig. 1 with the training set 
from Day1, and test it on the test set from Day1 
and then Day2. We calculate per slice accuracy 
by dividing the number of correctly predicted slic-
es by the total number of slices. We classify each 
example by summing the probability vectors of all 
the slices in that example and choosing the class 
with the highest value as the predicted class. We 
calculate per example accuracy by dividing the 
number of correctly predicted examples by the 
total number of test examples.

Learning on the DARPA Dataset: Since in the 
DARPA dataset the non-overlapping examples 
are already formed, tensors are extracted out of 
the examples in the same manner as our custom 
dataset. More details were discussed in previous 
work [10].

dAtA AuGmentAtIon
The purpose of data augmentation in the training 
pipeline is to make the DNN robust to channel 
and noise variations in the test set. In this process, 
the training data is passed through an augmenta-
tion block that captures different virtual instances 
of the wireless channel and the receiver noise. 
Data augmentation can be performed on either 
the transmitter data or the received IQ samples. 
After the network is trained, classifying the radios 
(i.e., the test phase) happens using a test set con-
taining received IQ samples.

dAtA AuGmentAtIon on the trAnsmItter dAtA

For data augmentation on the transmitter data, no  
changes need to happen in the transmitter pro-
cessing chain. Instead, transmitter data sequences 
— which contain the transmitter fingerprint, but 
no channel or noise distortions — are recorded to 
train the neural network. Sequences are chopped 
into non-overlapping examples, and data batches 
are created out of examples (as described in the 
previous section) using Keras Data Gener-
ator. In the classical approach for training, we 
simply feed these batches to the DNN. However, 

Figure 1. Forming tensors for the neural networks and three different neural 
network architectures of CNN1, CNN2, and ConvRNN.
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with our data augmentation scheme, each batch 
passes through an augmentation block before 
being fed to the DNN (Fig. 2). The augmenta-
tion block comprises a channel model and a noise 
model.

Channel Model: The channel model is a math-
ematical representation of a wireless channel that 
essentially captures the effects of natural distor-
tions (e.g., multipath fading on a transmitted wire-
less signal). The multipath fading channel is often 
modeled with a multi-tap FIR fi lter with appropri-
ate channel frequency response [12].

We use the Wireless LAN TGn (wlanTGn) 
channel model with delay profile of type Mod-
el-B. This model characterizes a typical indoor, 
large open space and offi  ce environment that has 
non-line-of-sight wireless propagation of 15 ns rms 
delay spread [13]. The model is simulated using 9 
taps of complex channel coeffi  cients, representing 
path gains and path delays. Following the central 
limit theorem, we sample these coeffi  cients from 
a complex Gaussian distribution with mean h
and variance h

2. Parameters h and h
2 can be esti-

mated from diff erent realizations of the wlanTGn 
channel model. However, in data augmentation 
on the transmitter data, h and h

2 are compen-
sated by normalizing the data batch at the input 
of the noise model. Therefore, we use typical val-
ues of h = 0 and h

2 = 1/(2 9) to ensure total 
power distribution of 9 complex taps equals 1 
unit.

During training, in every epoch, per batch 
of size (128, 198, 2), a new set of 9 complex 
taps (representing the channel model) are inde-
pendently drawn from Gaussian distribution. Each 
slice is convolved with this FIR filter. The output 
slices are stacked together to form a batch with 
the same dimension as the input batch (128, 
198, 2). The output batch is thus the transmitter 
IQ samples passed through the wireless channel 
model. Choosing new filter taps per batch and 
per epoch exposes the DNN to hundreds of 
thousands of different channel instances during 
training. While with classical training, validation 
accuracy saturates after several epochs, with data 
augmentation, the accuracy keeps improving as 
we continue training.

Noise Model: After the data batch passes 
through the channel model, it is fed to the noise 
model that emulates the additive receiver noise. 
The level of noise is chosen based on the SNR 
variations we expect in the test set. In our case, 
our objective is to study how robust the DNN is 
to SNRs in range [–10, 20] dB with steps of 2 dB.

In the noise model, fi rst the data batch is nor-
malized to ensure power = 1. Next, an SNR value 
is randomly drawn from the above range, which 
determines the power (variance n

2) of noise. Then 
a batch of noise with the same dimensions as the 
input is generated from Gaussian distribution with 
mean n = 0 and variance n

2 inversely proportion-
ate to the SNR level.

The batch of white Gaussian noise is finally 
summed with the filtered batch of signal. This 
completes the process of distorting the signal by 
both channel and noise models. We ensure that 
the resulting batch of data is always normalized 
before being fed to the DNN. It should be noted 
that in data augmentation on the transmitter data, 
the training set is never passed through a simu-
lated channel in MATLAB. Instead, the channel 
and noise are modeled in the data augmenta-
tion engine in the deep learning framework, as 
explained earlier.

In the test phase, since the received IQ sam-
ples already passed through simulated channel 
and noise in MATLAB, no further processing is 
needed in the deep learning pipeline. Test data 
batches only need to be normalized before enter-
ing the DNN, as the DNN is trained with normal-
ized data batches.

dAtA AuGmentAtIon on the receIVer dAtA

The complex FIR filter in the data augmentation 
block can also be used for augmentation on the 
receiver data. In this case, the convolution of the 
FIR fi lter does not conceptually refl ect the action 
of the wireless channel. The main contribution of 
the filter, instead, is to provide substantial vari-
ety in the training set by distorting the received 
IQ samples through a random selection of FIR 
taps per data batch. This variety in the training 
set prevents the DNN from overfi tting and hence 
improves the test accuracy.

Figure 2. Data augmentation is performed in the training phase. The pipeline for augmentation on the TxData comprises the channel 
model and the noise model. The pipeline for augmentation on the Rx IQ samples comprises the complex FIR fi lter.
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In data augmentation on the receiver data, 
similar to a conventional classification problem, 
we normalize the training set across all IQ sam-
ples in it. Then we load training batches and pass 
them through a randomly chosen FIR filter with 
11 complex taps (Fig. 2). Similar to data augmen-
tation on Tx data, the FIR taps are drawn from 
complex Gaussian distribution with mean h and 
variance h

2. Here, to prevent the scale of training 
batches from changing after fi ltering, we consider 
h and h

2 for an 11-tap complex Identity filter. 
This filter has one element with real part 1 and 
imaginary part 0, and 10 elements equal to 0. For 
this filter, h = 0.045 and h

2 = 0.0434. We use 
these statistics for the Gaussian FIR filter in the 
training pipeline so that the scale of training data 
does not change after filtering. In this way, the 
normalized test set can be fed to the DNN with-
out passing through a fi lter.

eVAluAtIon
In this section, we show the accuracy drop when 
the test set is collected under unseen channels, and 
how data augmentation presents a viable solution. 
For data augmentation on the transmitter data, we 
use the custom-generated dataset with CNN1 in 
Fig. 1. For data augmentation on the receiver IQ 
samples, we use the DARPA dataset with CNN1, 
CNN2, and ConvRNN shown in Fig. 1.

AccurAcY droP WIth unseen chAnnels

Here, we quantitatively demonstrate the drop in 
classification accuracy if we train the CNN1 on 
one Day but test it with data from another Day. 
When we train the DNN with the training set from 
Day1 (described earlier in the Custom-Generat-
ed Dataset subsection) and test it with the test set 
from Day1, classifi cation accuracy is ∼99 percent 
for SNRs > 12 dB. Thus, the virtual radios can be 
well distinguished when the training and test sets 
are collected using the same wireless channel. 
Next, after training CNN1 with Day1, we test it 
using Day2. Classifi cation accuracy vs. SNR for this 
case is shown in Fig. 3 as “Day1/Day2.” We see 
that the accuracy drops to 52 percent even in the 
comparatively high SNR = 20 dB. This is because 
when we train the model with Day1, we are in part 
learning the wireless channel along with the radio 
fi ngerprints, which impacts the classifi cation accu-
racy in generalized, diff erent-day test scenarios.

dAtA AuGmentAtIon on tX dAtA

To show how data augmentation addresses 
this problem, we train CNN1 with pure trans-
mitter-side IQ samples before passing through 

the channel (called TxData) for 10 radios with-
out data augmentation in the pipeline. The net-
work trained thusly is not able to classify radios 
from unseen channels (plot “TxData/Day2” in 
Fig. 3). We train CNN1 on TxData, this time with 
the data augmentation scheme, and test it with 
Day2. In this case, the network is able to detect 
devices from unseen channels and noise levels 
(plot “TxData+aug/Day2” in Fig. 3). The resulting 
91 percent accuracy at SNR = 20 dB shows 75 
percent improvement compared to 52 percent 
for the earlier case of Day1/Day2 when CNN1 is 
trained on one Day and tested on another.

Figure 4 shows the confusion matrices for 
CNN1 trained with TxData (without a data aug-
mentation engine) and with TxData passing 
through the cascade of the channel model and the 
noise model. Both trained models are tested with 
Day1 data at SNR 20 dB. As we can see, if the net-
work is trained with pure transmitter data without 
the augmentation block and tested with the test 
set in Day1, the classifi cation would be randomly 
performed. This happens due to the absence of 
channel and noise variations in the training set. 
In this case, the confusion matrix does not show 
any particular pattern. However, if the network 
is trained with transmitter data with the channel 
model and the noise model in the pipeline, the 
highlights around the diagonal of the confusion 
matrix form vividly. The diagonal highlights rep-
resent each true label being predicted correctly, 
which yields high classifi cation accuracy.

dAtA AuGmentAtIon on rX dAtA

As described earlier, we use WiFi raw IQ samples 
from the U.S. DARPA-provided dataset, for 50, 
250, 500, and 5000 devices. Figure 5 shows per 
example accuracy without and with data augmen-
tation in the training pipeline for diff erent dataset 
sizes. Augmentation in all dataset sizes is validated 
using CNN1. For the 50-device dataset, two addi-
tional DNNs of CNN2 and ConvRNN are also 
used to show the performance across different 
architectures. The results for the 50-device dataset 
show that data augmentation improves accuracy 
for diff erent DNNs up to 35 percent.

The overall results for different dataset sizes 
in Fig. 5 show a boost of 35, 51, 32, and 41 per-
cent for 50, 250, 500, and 5000 device datasets, 
respectively. In these cases, data augmentation 
prevents overfitting by providing variety in the 
training set, which boosts the test accuracy.

oPen reseArch chAllenGes
We identify the following research challenges for 
the application of data augmentation in the train-
ing pipeline in RF fi ngerprinting.

Type of Filter: Our data augmentation scheme 
uses FIR filters that present several advantages. 
First, they do not rely on future inputs, only past 
and present ones. Second, they are easy to imple-
ment and can approximate a function through 
appropriate weighting and a finite-term sum. 
Whether alternate fi lters such as infi nite impulse 
response (IIR) filters, which combine FIR filters 
with recursive loops, also work is an open ques-
tion.

FIR Coefficient Range: We showed that data 
augmentation works without the need to filter 
the test set if the FIR taps are chosen from com-

Figure 3. Classifi cation accuracy vs. SNR for diff er-
ent cases of TrainingSet/TestSet.
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plex Gaussian distribution with specific h and 
h

2. However, if the test set also passes through 
an FIR fi lter with the same statistics as the FIR fi l-
ter in the training phase, this h and h

2 can vary. 
Nevertheless, there are permissible upper and 
lower bounds for choosing the FIR coeffi  cients for 
each dataset. Going beyond these thresholds may 
actually reduce the accuracy. For example, signals 
from diff erent classes may be confused with each 
other after fi ltering with a set of coeffi  cients with 
arbitrary variance, which decreases the classifi ca-
tion accuracy.

Number of FIR Filter Taps: For data augmenta-
tion on the receiver IQ samples, we are not con-
fined to a particular channel model. Hence, the 
number of taps for the FIR fi lter can vary to arbi-
trarily large numbers. We have not yet explored 
the eff ect of this parameter on the accuracy.

Training Indoors, Testing Outdoors: With our 
simulated data, we showed that data augmenta-
tion works, but within the boundaries of a single 
channel model, even when specific instances of 
the channel are diff erent. This is analogous to the 
situation when the same indoor environment is 
instantiated on different days. However, one of 
the main challenges in deep-learning-based wire-
less signal classification is transitioning between 
environments. It remains an open question if the 
training dataset collected in static indoor environ-
ment, even with extensive data augmentation, can 
help if test is done in an outdoor environment.

conclusIon
This article describes how data augmentation can 
improve classifi cation accuracy in situations when 
a DNN is trained with data from one wireless 
channel and tested on data from another channel. 
Our data augmentation block works on both pure 
transmitter-side IQ samples (before transmission 
over the wireless channel) as well as receiver-side 
IQ samples (that have gone through a wireless 
channel). Data augmentation enhances the train-
ing set by introducing diff erent distortions resem-
bling instances of the channel and noise. The 
DNN trained with augmented data is robust to 
unseen channels and noise variations in the test 
set. We demonstrate up to 75 percent and 51 
percent increase in signal classifi cation accuracy 
over the non-augmented case in a custom dataset 
and the DARPA dataset, respectively. Thus, we 

believe data augmentation can help to train chan-
nel-resilient DNNs. This will enhance not only RF 
fi ngerprinting, but also other wireless signal clas-
sification tasks in practical deployments beyond 
controlled laboratory tests.

AcknoWledGment
This work is supported by NSF grant CCF-
1937500.

reFerences 
 [1] J. Yu et al., “A Robust RF Fingerprinting Approach Using 

Multisampling Convolutional Neural Network,” IEEE Internet 
of Things J., vol. 6, no. 4, 2019, pp. 6786–99. 

[2] K. Sankhe et al., “ORACLE: Optimized Radio Classifi cation 
Through Convolutional Neural Networks,” IEEE INFOCOM 
2019, pp. 370–78. 

[3] K. Sankhe et al., “No Radio Left Behind: Radio Fingerprinting 
Through Deep Learning of Physical-Layer Hardware Impair-
ments,” IEEE Trans. Cognitive Commun. and Networking, vol. 
6, no. 1, 2019, pp. 165–78. 

[4] C. Shorten and T. M. Khoshgoftaar, “A Survey on Image 
Data Augmentation for Deep Learning,” J. Big Data, vol. 6, 
no. 1, 2019, p. 60. 

[5] S. J. Pan et al., “Transfer Learning for Wifi-Based Indoor 
Localization,” Proc. Assn. for the Advancement of Artifi cial 
Intelligence Wksp., vol. 6, Palo Alto, CA, 2008. 

[6] T. S. Nazaré et al., “Deep Convolutional Neural Networks 
and Noisy Images,” Iberoamerican Congress on Pattern Rec-
ognition, Springer, 2017, pp. 416–24. 

[7] F. Restuccia et al., “DeepRadioID: Real-Time Channel-Re-
silient Optimization of Deep Learning-Based Radio Finger-
printing Algorithms,” Proc. 20th ACM Int’l. Symp. Mobile Ad 
Hoc Networking and Computing, 2019, pp. 51–60. 

Figure 4. Confusion matrices for augmentation on TxData, trained without and with an augmentation 
engine. Both models are tested with Day1 data at SNR = 20dB.

Figure 5. Per example accuracies without and with data augmentation (DA) for 
the DARPA dataset.

SOLTANI_LAYOUT.indd   71SOLTANI_LAYOUT.indd   71 10/27/20   4:07 PM10/27/20   4:07 PM
Authorized licensed use limited to: Northeastern University. Downloaded on October 02,2023 at 01:45:13 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • October 202072

[8] B. Tang et al., “Digital Signal Modulation Classification with 
Data Augmentation Using Generative Adversarial Nets in 
Cognitive Radio Networks,” IEEE Access, vol. 6, 2018, pp. 
15,713–22. 

 [9] Genesys Lab, “Genesys lab ML datasets”; http://genesyslab. 
org/mldatasets. 

[10] T. Jian et al., “Deep Learning for RF Fingerprinting: A Mas-
sive Experimental Study,” IEEE Internet of Things Mag., vol. 3, 
no. 1, 2020, pp. 50–57. 

[11] N. Soltani et al., “Spectrum Awareness at the Edge: Mod-
ulation Classification Using Smartphones,” IEEE DySPAN 
2019, pp. 1–10. 

[12] A. Alimohammad et al., “Filter-Based Fading Channel Mod-
eling,” Modelling and Simulation in Engineering, vol. 2012, 
2012. 

[13] V. Erceg, “IEEE P802.11 Wireless LANs TGn Channel Mod-
els,” IEEE 802.11-03/940r4, 2004.

bIoGrAPhIes
Nasim soltaNi is a Ph.D. student in the Department of Electrical 
and Computer Engineering at Northeastern University, Boston, 
Massachusetts. Her current research focuses on deep learning 
algorithms for signal classification.

KuNal saNKhe is currently pursuing a Ph.D. degree in computer 
engineering at Northeastern University. His research interests 
are implementing deep learning in the wireless domain and 
developing a cross-layer communication framework for IoT.

JeNNifer Dy is a professor in the Department of Electrical and 
Computer Engineering, Northeastern University. Her research 
spans both fundamental research in machine learning and their 
application to biomedical imaging, health, science, and engineer-
ing, with contributions in unsupervised learning, dimensionali-
ty reduction, feature selection, learning from uncertain experts, 
active learning, Bayesian models, and deep representations.

stratis ioaNNiDis is an associate professor in the Electrical and 
Computer Engineering Department of Northeastern University, 
where he also holds a courtesy appointment with the Khoury Col-
lege of Computer Sciences. His research interests span machine 
learning, distributed systems, networking, optimization, and privacy.

KaushiK ChowDhury is a professor at Northeastern University. 
His research interests involve systems aspects of networked 
robotics, machine learning for wireless communications and net-
working, wireless energy transfer, and large-scale experimental 
deployment of emerging wireless technologies.

SOLTANI_LAYOUT.indd   72SOLTANI_LAYOUT.indd   72 10/27/20   4:07 PM10/27/20   4:07 PM
Authorized licensed use limited to: Northeastern University. Downloaded on October 02,2023 at 01:45:13 UTC from IEEE Xplore.  Restrictions apply. 


