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Abstract
Collecting an over-the-air wireless communi-

cations training dataset for deep learning-based 
communication tasks is relatively simple. Howev-
er, labeling the dataset requires expert involve-
ment and domain knowledge, may involve private 
intellectual properties, and is often computation-
ally and financially expensive. Active learning is 
an emerging area of research in machine learning 
that aims to reduce the labeling overhead without 
accuracy degradation. Active learning algorithms 
identify the most critical and informative samples 
in an unlabeled dataset and label only those sam-
ples, instead of the complete set. In this article, we 
introduce active learning for deep learning appli-
cations in wireless communications, and present 
its different categories. We present a case study 
of deep learning-based mmWave beam selection, 
where labeling is performed by a compute-inten-
sive algorithm based on exhaustive search. We 
evaluate the performance of different active learn-
ing algorithms on a publicly available multi-modal 
dataset with different modalities including image 
and LiDAR. Our results show that using an active 
learning algorithm for class-imbalanced datasets 
can reduce labeling overhead by up to 50 per-
cent for this dataset while maintaining the same 
accuracy as classical training.

Introduction
Deep Learning has revolutionized the field of wire-
less communications by offering automated solu-
tions for many physical layer (PHY) applications, 
ranging from signal detection and classification [1], 
to security measures in data coding and device 
authentication [2], as well as receiver chain design 
[3]. In such solutions, a learning algorithm learns 
the mapping between inputs and outputs (labels) 
through getting trained on an ideally diverse and 
comprehensive labeled dataset. The best general-
ization ability on real-life test signals is achieved if 
the training dataset also contains in-the-wild-collect-
ed and real-life radio frequency (RF) signals.

Labeling an RF Dataset: Collecting wild over-
the-air RF datasets can be performed by simply 
recording signals in bands of interest from WiFi, 
cellular, or other wireless networks, however, label-
ing such a dataset is no trivial task. Labeling an 
RF dataset can be especially cumbersome since 

obtaining these labels requires a high degree of 
professional knowledge. In the RF domain, labels 
are obtained using either compute-intensive and 
time-consuming signal processing algorithms or 
hand-engineered features by human experts. Over-
all, we describe 3 broad situations where labeling 
RF datasets is challenging:

Challenge 1: Compute-Intensive Labeling: 
One of the main motivations behind using deep 
learning instead of the traditional deterministic 
algorithms in many PHY applications (e.g., RF fin-
gerprinting [2] and modulation classification) is 
to reduce decision time by substituting the com-
pute-intensive traditional signal processing algo-
rithms with a lighter trained algorithm, in the 
inference phase. However, the training process still 
requires the compute-intensive traditional algorithm 
to provide the labels. Authors in [4] show that (tra-
ditional) cyclostationary signal processing (CSP) 
algorithms require 33.5M floating point operations 
(FLOPs) to acquire label for one signal in an anom-
aly detection problem.

Challenge 2: Labeling with Human in the 
Loop: Similar to the image processing domain, 
where human operators label images in the train-
ing dataset, many PHY signal processing tasks 
require human involvement to acquire labels. One 
such example is CSP, where highly discriminative 
features are extracted from PHY signals using var-
ious periodically time-variant probabilistic parame-
ters. After feature extraction, human involvement 
is necessary to set specific thresholds for classifying 
extracted features in a modulation classification 
problem or detecting the potential presence of a 
specific waveform [4].

Challenge 3: Financially Costly Labeling With 
Private Intellectual Properties (IPs): Another chal-
lenge is labelling an RF dataset using proprietary 
and private signal processing IPs designed and 
owned by telecommunication companies. These 
IPs are provided to customers for certain end-to-
end functions, therefore, their intermediate signals 
are only internally available and are not provided 
to the customers through user interfaces. As an 
example, consider an IP that provides the end-to-
end orthogonal frequency division multiplexing 
(OFDM) receiver processing and data decoding. 
The input to the IP is the received signal and the 
output is decoded bits after all the steps of syn-
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chronization, channel estimation, equalization, 
demapping, and decoding [3]. Since the intermedi-
ate outputs such as the estimated channel are not 
exposed in the interface, if a user wishes to train 
a channel estimator deep neural network (DNN) 
using this IP, they have to pay extra for the estimat-
ed channel labels. In this case, a method that helps 
to fi nd the most informative samples to be labeled 
can reduce the fi nancial labeling cost.

Active Learning to Enable “Learning From the 
Best”: Active learning can be used to address the 
three aforementioned challenges where acquiring 
signal labels is expensive. In this article, we intro-
duce active learning as a tool to train a DNN with 
reduced number of labeled training samples. As 
shown in Fig. 1, as opposed to classical training 
where all the samples in the training dataset are 
labeled, in active learning the DNN has access to 
an unlabeled dataset. The active learning algorithm 
iteratively and adaptively selects the most informa-
tive and critical samples from this unlabeled pool 
using probability scores and queries an information 
source or oracle for labels of only those samples. 
When the oracle provides the labels, a labeled 
training set is updated iteratively with newly labeled 
samples and the DNN is trained on the complete 
labeled training set. The process continues until 
the desired labeling budget is met. In this way, the 
learning algorithm learns data distribution using 
only the most informative samples instead of the 
whole pool, and hence, learns from the best.

In [5], active learning is applied to reduce the 
expert labeling cost while training random forest 
models for internet of things (IoT) intrusion detec-
tion. However, to the best of our knowledge, deep 
active learning algorithms have not been used in 
the wireless communications domain before. In 
this article, we address a much broader range of 
concerns around labeling cost of RF datasets. Fur-
thermore, we provide a detailed and first-to-date 
guide in using different categories of deep active 
learning algorithms for diff erent PHY applications. 
Later, we present a case study of active learning for 
mmWave beam selection using a publicly available 
multi-modal dataset [6] that is extremely class-im-
balanced, similar to many other in-the-wild-collect-
ed RF datasets. We deploy a properly suited deep 
active learning algorithm for extremely imbalanced 
datasets named as GALAXY [7] on diff erent modal-
ities of the dataset. We show that GALAXY can 

reduce the labeling need by up to 50 percent on 
this dataset, while maintaining the same accuracy 
as classical training. We present future directions 
and conclude the article in the fi nal section.

cAtegorIZIng ActIve leArnIng AlgorItHms
for PHY APPlIcAtIons

In this section, we categorize active learning algo-
rithms from two diff erent perspectives:
• How much of the dataset is available
• What is the deep learning-based PHY problem 

type. 
A detailed categorization is described below and 
a summary is shown in Fig. 2. As it can be seen in 
Fig. 2, the above categories are independent and 
parallel and any given PHY task can fall in one of 
the branches under A and another branch under 
B, depending on the dataset availability and the 
PHY problem type.

bAsed on AvAIlAbIlItY of rf dAtAset
Pool-Based Active Learning: Pool-based active 
learning is probably the best performing active 
learning scenario, where the highest performance 
can be achieved with fewest labeled samples. This 
high performance is achieved at the expense of a 
large pool of collected data being available. The 
pool-based active learning fl ow is described in the 
following steps:
1. A specifi c labeling budget is considered and a 

batch size, N, is set by the user in the begin-
ning of training. 

2. In the fi rst active learning iteration, N random 
samples are drawn from the unlabeled pool 
and the oracle is queried for the labels of that 
batch.

4. The model is trained fully for multiple epochs 
on the labeled batch (i.e., labeled training set).

5. In the beginning of next iteration, the so-far 
trained model is tested on the whole pool and 
predictions are recorded.

6. A specifi c active learning algorithm [8] becomes 
eff ective to select another N unlabeled samples 
— based on the prediction results — to be que-
ried in the current iteration. 

7. The labels of the new batch are provided by the 
oracle and the training set is updated with the 
newly labeled batch.

8. The model is trained on the current labeled 
training set, and the steps are repeated starting 
with step 4 until the labeling budget is met.
Pool-based active learning is suitable for off line 

training tasks, which is ideal for PHY applications 
too, as it obviates the requirement of specialized 
hardware for training on edge devices. Off line learn-
ing is pragmatic for PHY applications where the dis-
criminating factors of the dataset remain consistent 
over time, in diff erent heat degrees, in diff erent envi-
ronments, and under different wireless channels. 
Examples of such tasks could be signal detection 
[1], demapping [3], decoding [3], and so on. In such 
cases, if a pool of PHY signals is collected, pool-
based active learning can be deployed to train an 
equally robust model with fewer labeled samples.

Stream-Based Selective Sampling: In this sce-
nario, the learner receives training samples one 
by one and decides whether to query or discard 
them. The key assumption to use this scenario is 
that obtaining an unlabeled sample is free or inex-

FIGURE 1. Top: Classical learning where the complete dataset is labeled and used for training. 
Bottom: Active learning where a subset of the dataset is selected and labeled for training.
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pensive, which is the case for most PHY appli-
cations with either synthetic data generation or 
over-the-air data collection. As this scenario does 
not incorporate the assumption of accessing a full 
dataset, it can be deployed to deep learning-based 
PHY applications that require online training. 
Such cases usually encompass applications where 
a significantly impactful factor changes between 
the training and deployment phases. In this case, 
a deep learning algorithm needs to go through a 
phase of online training as the environment chang-
es. Among the very environment-dependent PHY 
applications that can benefit from stream-based 
selective sampling are channel estimation [3], and 
beam selection [6] in new environments. In such 
cases, stream-based selective sampling could be 
used to skip labeling some of the uninformative 
samples, and hence reduce queries on the expen-
sive traditional algorithms. This category of active 
learning algorithms also obviates the need for a 
large data storage to contain a large pool of unla-
beled data. The decision of whether to query or 
discard a new sample can be taken based on an 
informativeness measure or by defining an explicit 
region of uncertainty.

Membership Query Synthesis: In this scenar-
io, the learner creates new training samples in the 
input space. These new samples could be generat-
ed by creating random inputs in the input space or 
by augmenting the existing training samples. After 
sample generation, the learner queries the oracle 
to provide the label for the newly generated sam-
ple. Membership query synthesis is specially helpful 
if the training dataset is small and sparse, however, 
labeling some of the generated samples could be 
awkward for the oracle. As an example, consider 
deploying membership query synthesis to train a 
modulation classifier DNN on a small and sparse 
training set. In this case, the learner generates new 
samples in the input space and queries a classical 
signal processing algorithm (i.e., an oracle) for the 
label (a.k.a., modulation class). However, since the 
sample is synthetically generated and is not actu-
ally modulated by a certain scheme, it might be 
labeled as noise by the oracle.

Based on PHY Problem Type
Multi-Class Classification Problems: Multi-class 
classification problems are tasks where each 
input is predicted to be a member of one specif-
ic class. Examples of such PHY applications are 
device authentication (a.k.a., RF fingerprinting) 
[2], modulation classification, waveform (proto-

col) classification, and mmWave beam selection 
[6] that is the case study in this article (see next 
section). In machine learning literature, authors 
in [9] utilize a hybrid of uncertainty and diversi-
ty-based strategies for image, tabular, and lan-
guage class-balanced datasets, which generally 
performs well against other existing algorithms. 
Authors in [10] study active learning for large 
models and datasets through extensive experi-
ments, and demonstrate as the model and dataset 
sizes increase, label-efficiency gain also increases 
and the benefits from active learning are highlight-
ed. Additionally, authors in [7] study the extreme 
class-imbalanced settings and significantly reduce 
the labeling cost through balancing the collected 
labels, while choosing the most uncertain samples 
in benchmark datasets such as CIFAR.

Multi-Label Classification Problems: Multi-la-
bel classification problems are tasks where each 
input is a member of multiple classes instead of 
just one. A demapper DNN that converts symbols 
to bits is considered a multi-label classifier as sever-
al output bits can be 1 for each input symbol [3]. 
The same output type is designed in [11], which 
proposes a DNN-based 5G receiver. Multi-label 
classification is previously used also for detecting 
multiple waveforms in a spectrogram [1] through 
YOLOv3 framework. In machine learning, there 
are two types of multi-label queries: sample-based 
and sample-label-based. Sample-based annotation 
provides all associated labels of a sample at a time, 
whereas sample-label-based annotation only gives 
the binary association between a sample and a par-
ticular label. Authors in [12] study the class-imbal-
anced settings with sample-based annotation by 
balancing number of labels in each class. In addi-
tion, authors in [13] develop a strategy for sam-
ple-label-based annotation.

Regression Problems: Regression PHY prob-
lems are applications where a single value or a vec-
tor of values are predicted for each input signal. 
Examples of such problems are carrier frequency 
offset (CFO) estimation [14] and channel estima-
tion [3], respectively. In machine learning literature, 
authors in [15] propose an uncertainty-based strat-
egy by querying samples with the highest variance 
of inference outputs when applying Monte Carlo 
dropout to a DNN. In order to take advantage of 
both uncertainty-based and diversity-based con-
cepts, [9] proposes an optimal design strategy by 
utilizing Fisher information.

More details about active learning algorithms 
can be found in [8] for interested readers. In the 

FIGURE 2. Categorization of active learning algorithms from two different and parallel perspectives of: A. Availability of RF dataset, and B. PHY problem type. 
In this article, we study a PHY use case for active learning that falls within the categories marked with red boxes.
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rest of this article, we focus on a pool-based multi-
class classification example use case that is shown 
with red boxes in Fig. 2.

Active Learning for mmWave Beam Selection
In this section, we introduce mmWave beam 
selection as an example application to show the 
benefit of active learning for a deep-learning 
task in the wireless communications domain. We 
describe the multi-modal mmWave dataset, and 
describe the active learning algorithm used to 
learn this dataset in details.

Millimeter-Wave Beam Selection
Millimeter-Wave beam selection is a PHY appli-
cation, where the input is the set of collected 
beams and the output is the “best” beam index. 
Traditionally the best beam is selected through a 
compute-intensive and time-consuming algorithm 
based on an exhaustive search on all the possible 
beams. Authors in [6] propose using DNNs on 
multi-modal data for limiting the exhaustive search 
to a smaller subset of top beams. Their proposed 
DNN-based scheme reduces the beam selection 
time by 57 percent for mobility scenarios in V2X 
communication compared to the classical exhaus-
tive search. However, training the DNN prior to 
the deployment phase requires labels that are 
achieved through the exhaustive search. There-
fore, labeling a mmWave dataset for a beam 
selection task could benefit from active learning 
to reduce the need for labeled training samples 
and overall reduce labeling overhead. Active 
learning provides this reduction by selecting the 
most informative unlabeled samples and query-
ing the oracle (i.e., exhaustive beam selection 
algorithm) only for the labels of those samples. 
To evaluate active learning, we use the FLASH 
multi-modal dataset [6] and formulate beam 
selection as a multi-class classification pool-based 
active learning problem.

Dataset Description
FLASH dataset [6] consists of different modalities 
including camera images and LiDAR collected 
from an automated car driving in a street, while 
communicating with a mmWave radio posing 
as a base station. The mmWave signals are also 
collected to later be processed and provide the 
beam indices (i.e., labels) for each location. There 
are 4 different categories in the dataset consist-
ing of 21 line-of-sight (LOS) and non-line-of-sight 
(NLOS) scenarios, each consisting of 10 episodes 
which are 10 different runs of the car in the 

same scenario. In each location camera image 
and LiDAR signals are recorded. In the TP-Link 
Talon AD7200 triband router that is used as the 
mmWave radio, 34 different beam indices are 
defined. Therefore, the beam selection problem is 
formulated as a multi-class classification problem 
with 34 classes whose indices range from 0 to 33. 
We count population per class in all the catego-
ries, scenarios, and episodes across all the 30711 
datapoints in the whole dataset, and demonstrate 
population per class in Fig. 3. With the smallest 
class (index 8) with 20 members and the largest 
(index 18) with 6882 members, we observe an 
extreme class imbalance in the dataset.

For labeling class-imbalanced datasets such as 
FLASH, special considerations need to be taken 
into account so that the samples from larger class-
es are not favored to be selected over the samples 
from smaller classes. To incorporate these consid-
erations, authors in [7] proposes GALAXY.

GALAXY Algorithm for  
Learning Class-Imbalanced Datasets

GALAXY [7] is proposed specifically for pool-
based active learning in multi-class classification 
problems on extremely class-imbalanced data-
sets. Confidence sampling, which is a popular 
uncertainty-based sampling algorithm, selects 
the samples that show relatively low confidence 
compared to the rest of samples in the pool, with-
out considering their predicted class. Therefore, 
in imbalanced datasets confidence sampling is 
most likely to select samples in larger classes to 
be labeled. On the other hand, GALAXY finds 
the optimal decision boundaries through a bisec-
tion procedure and selects samples that are both 
uncertain and class-diverse.

Similar to all pool-based active learning algo-
rithms, GALAXY comes into action in the begin-
ning of each iteration, after the trained model is 
tested on the complete pool of samples (see pre-
vious section). GALAXY uses a two-phase proce-
dure. During the first phase, GALAXY calculates 
a one-versus-all uncertainty score for each sample 
using the predicted probability vector. For each 
example class X, GALAXY sorts the pool samples 
(including unlabeled and already labeled samples) 
based on their uncertainty scores and forms a lin-
ear graph for each class X with samples as graph 
nodes, while it considers all other classes as class 
Y. The samples on the two ends of the graph have 
the lowest uncertainty scores in classes X and Y. 
The samples with higher uncertainty are located in 
between the two end nodes. The goal is to label 
all pairs of nodes that form an edge and are clas-
sified as different classes of X and Y. Such edges 
are called cuts. We call a segment of consecutive 
nodes on the graph bisectable, if it has labeled 
samples of classes X and Y on its two ends, and 
it contains no already-labeled cuts. We note that a 
bisectable segment always has a cut in it. When we 
locate a bisectable segment, a bisection procedure 
is performed, where GALAXY iteratively queries 
and labels samples one at a time. If there are mul-
tiple bisectable segments in each graph, GALAXY 
prioritizes the shortest segment across all graphs 
to bisect. The second phase starts when there is 
no bisectable segments left in any graphs. In this 
phase, GALAXY queries and labels samples around 
all identified cuts thus far. During this process, if 

FIGURE 3. Population per class across 30711 samples in 
the dataset shows extreme class-imbalance in the data-
set. The smallest class is class 8 with 20 and the largest 
class is class 18 with 6882 members.
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additional bisectable segments appear, GALAXY 
reverts to the first phase. A simplified overview of 
GALAXY is shown in Fig. 4.

In each iteration, GALAXY search stops as soon 
as a batch of N samples is labeled. Next, the DNN 
is retrained on all the labeled samples and the lin-
ear graphs are updated for each class. More details 
about GALAXY and evaluations on non-RF datasets 
are described in [7].

Evaluations
In this section, we show test accuracy results on 
two modalities of FLASH dataset for mmWave 
beam selection with and without active learning.

Evaluation Setup
As the lowest class population is 20 (Fig. 3), we 
shuffle the dataset and pick 10 samples from 
each class to compose the test set, and keep the 
rest (30371 samples) for training. In this way, we 
maintain a class-balanced test set where all class-
es contribute equally to test accuracy, and an 
imbalanced training set, which is the real-world 
case for any in-the-wild RF training dataset collec-
tion. We use GALAXY [7] as the state-of-the-art 
active learning algorithm for imbalanced datasets. 
To have a point-to-point comparison with classi-
cal learning in each and every iteration, we use 
random sampling to randomly select samples to 
be labeled [7]. We also compare GALAXY with 
confidence sampling that is a popular uncertain-
ty-based active learning algorithm [8].

For each modality, we use different DNNs. For 
image modality we resize the inputs to dimensions 
of (3, 90, 160) and use standard ResNet18 with 
11.1M parameters from torchvision package. 
For LiDAR modality with inputs of size (20, 20, 20), 
we use a custom convolutional DNN with residual 
blocks totally with 1.1M parameters, that is used 
in [6]. Following the pool-based active learning 
steps described earlier, we set the active learning 
batch size to 204 which means in each iteration 
204 samples are selected and queried for labels 
and are added to the current labeled training set. 
As explained before, the strategy of selecting the 
new batch from the unlabeled pool of samples 
depends on the active learning algorithm. We 
train each DNN with its corresponding training set 
modality of that iteration for several epochs, until 
it is fully trained. At the end of each iteration we 
measure test accuracy and per-class minimum que-
ries, which is a good metric for class-diversity. We 
repeat the end-to-end training/test experiments 5 
times for each active learning algorithm in each 
modality, and between the 5 runs, we shuffle and 
re-partition our training and test sets. For each 
modality and each algorithm, we report the aver-
age of test accuracies at each iteration over the 5 
runs. We also report standard errors (calculated as 
standard deviation of accuracies divided by square 
root of number of runs) of test accuracies at each 
iteration averaged over all iterations.

Numerical Results
Test Accuracy: For each modality and each algo-
rithm, we smoothen the curves of average test 
accuracies using an averaging window of size 10, 
for less spiky illustration. In Fig. 5, we show aver-
age test accuracy versus the number of labeled 
samples in each iteration. We observe that for 

both modalities GALAXY algorithm plateaus in 
earlier iterations with fewer labeled samples. 
For image modality, we report average standard 
errors of 1.0 percent, 1.2 percent, and 1.0 per-
cent for random sampling, confidence sampling, 
and GALAXY, respectively. This standard error 
for each algorithm is caused by different training 
and test set partition selections, as well as differ-
ent seeds for the initial random batch selection 
among all runs.

In image modality, we observe that random sam-
pling, confidence sampling, and GALAXY achieve 
an example accuracy of 60 percent with 19176, 
17136, and 9588 labeled samples, respectively. This 
means that GALAXY is able to achieve the same 
accuracy of 60 percent with 50 percent and 40 per-
cent fewer labeled samples compared to random 
sampling and confidence sampling, respectively. 
In the same modality, GALAXY can achieve 63 
percent accuracy with 42 percent and 41 percent 
fewer labeled samples compared to random sam-
pling and confidence sampling, respectively.

For LiDAR modality, we plot the average accu-
racies and report average standard errors of 1.6 
percent, 1.8 percent, and 1.7 percent for random 
sampling, confidence sampling, and GALAXY, 
respectively. We observe that GALAXY is able to 
achieve an example accuracy of 71 percent with 
11 percent and 10 percent fewer labeled samples 
compared to random sampling and confidence 
sampling, respectively.

Per-Class Minimum Queries: We showed 
that GALAXY excels the performance of random 
sampling and confidence sampling by achieving 
the same accuracy with fewer number of labeled 
training samples (a.k.a queries). Here we show that 
GALAXY achieves this by considering the predict-
ed class for selecting the samples to be queried, 
and selects a class-diverse batch. Figure 6 shows 
average minimum queries per class for image and 

FIGURE 4. GALAXY algorithm where (1) Uncertainty 
scores are calculated and the graphs are composed 
with sorted uncertainty scores for each class X versus 
all other classes as class Y, (2) Bisectable segments are 
identified, and (3) Bisectable segments are prioritized and 
the samples around all identified cuts in the bisectable 
segments are queried based on the priority.
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LiDAR, with three diff erent algorithms of random 
sampling, confi dence sampling, and GALAXY. We 
recall that the smallest class has 20 members (Fig. 
3) out of which 10 are partitioned as the test set. 
Therefore, the smallest class in the training set has 
10 members. In Fig. 6, we observe that GALAXY 
reaches per-class minimum queries of 10 much 
earlier than random and confidence sampling, 
which shows that the smallest class is completely 
queried in earlier iterations. We observe that in 
the image modality, GALAXY reaches per-class 
minimum queries of 10 at 12648 labeled sam-
ples, while random and confidence sampling get 
to the point of completely sampling the smallest 
class when 29376 and 29784 samples are queried, 
respectively. This shows that GALAXY fully queries 
the smallest class in the training set in 56 percent 
and 57 percent fewer queries compared to those 
of random and confi dence sampling, respectively. 
Similarly, in LiDAR modality, GALAXY fully queries 
the smallest class in 66 percent and 67 percent 
fewer queries compared to random sampling and 
confi dence sampling, respectively.

future dIrectIons

dIgItAl tWIns of WIreless netWorks
A digital twin is a virtual model of a real world 
environment that is designed to study the prop-
erties of the real world without risking damage 
to life or property in it. In wireless communica-
tions, digital twins are used for modeling RF prop-
agation patterns, designing network architectures, 
and optimizing PHY protocols. With a high-fi del-
ity digital twin, the emulation outputs are anal-
ogous to real-world observations. As a result, 
recent work suggests using digital twins instead 
of running measurement campaigns and generat-
ing labels for machine learning tasks. While using 
digital twins significantly reduces human effort 
and equipment cost, running a high fi delity digital 
twin for labeling a dataset often requires intensive 
computation and is time consuming. On the other 
hand, active learning enables training DNNs with 

a reduced number of labeled training samples. 
As a result, by pairing the digital twins with active 
learning, a framework can be self-sufficient by 
optimally generating the labels in the digital twin.

ActIve leArnIng In QuAntum communIcAtIon
Quantum communication is used for transmit-
ting highly sensitive data due to the entanglement 
process, where eavesdropping leaves a trace, as 
measuring the state of one qubit aff ects the state 
of another qubit that is entangled with it. Hence, 
while designing a deep-learning-based receiver 
for quantum communications, labeling qubits that 
involves measuring their states is expensive and 
consequential. In this case, active learning can help 
train an equally robust DNN with fewer labeled 
samples (qubits).

ActIve leArnIng for PreservIng PrIvAcY In 
oPen rAdIo Access netWork (o-rAn)

Active learning can be specially helpful when a 
training set is collected using an O-RAN system, 
as the data and labels have high privacy in O-RAN 
systems. Active learning can help reduce the 
number of required labeled samples, and hence 
preserve user’s privacy as much as possible. In 
this case, the network operators can start with a 
few iterations of random sampling until there is 
one labeled sample from each class. Then, a more 
sophisticated sampling algorithm could be used 
for more guided sampling and selecting the most 
informative samples.

oPtImIZIng for 
trAInIng comPutAtIonAl cost besIdes lAbelIng cost

As established in this article, active learning aims 
to reduce the labeling cost through adaptively 
and iteratively selecting the most informative 
unlabeled samples to be queried for labels. Apart 
from this, continual and life-long learning algo-
rithms that are originally designed to address the 
catastrophic forgetting problem, can also be used 
for optimizing training computational cost. This is 
achieved by preserving the previous knowledge 

FIGURE 5. Average test set accuracy measured in each active learning iteration for two modalities of image and LiDAR, each 
with three diff erent algorithms of random sampling, confi dence sampling, and GALAXY.

FIGURE 6. Average per-class minimum queries on the training set in each active learning iteration for two modalities of 
image and LiDAR, each with three diff erent algorithms of random sampling, confi dence sampling, and GALAXY.

In wireless communica-
tions, digital twins are 
used for modeling RF 
propagation patterns, 
designing network 
architectures, and opti-
mizing PHY protocols. 
With a high-fi delity dig-
ital twin, the emulation 
outputs are analogous 
to real-world observa-
tions. As a result, recent 
work suggests using 
digital twins instead of 
running measurement 
campaigns and gener-
ating labels for machine 
learning tasks. 
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and fine-tuning the DNN using the new data, 
instead of re-training it again on old and new data 
from scratch. The two categories of methods are 
mutually exclusive and can be jointly applied to 
deep learning based PHY applications to improve 
both labeling and training computational costs.

Conclusion
In this article, we introduced active learning for 
deep learning applications in wireless communica-
tions. We described different categories of active 
learning algorithms and mapped them to differ-
ent PHY deep learning applications. Next, we dis-
cussed a case study of mmWave beam selection 
as an example of active learning for extremely 
class-imbalanced datasets, that is the case for 
many RF datasets that are collected in the wild. 
We investigated how active learning reduces 
labeling overhead for two different modalities in 
the dataset, and showed that using active learning 
we can achieve the same accuracy as the classi-
cal training with up to 50 percent fewer labeled 
samples. We further showed future directions for 
using active learning in wireless communications.
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